
AI应用实战
文章平均质量分 91
AI 核心算法理论与实战, AI 最佳实践
TracyCoder123
人的某些烦恼源于书读的太少而想的太多
展开
-
星火大模型接入及文本生成HTTP流式、非流式接口(JAVA)
接口文档在这个地址查看:https://www.xfyun.cn/doc/spark/HTTP%E8%B0%83%E7%94%A8%E6%96%87%E6%A1%A3.html#_1-%E6%8E%A5%E5%8F%A3%E8%AF%B4%E6%98%8E。本文以模型Spark Lite为例,重要信息(APIPassword、接口地址)在这个页面查看:https://console.xfyun.cn/services/cbm。相比非流式略微有一些不同,响应分成了多次,最后一个。原创 2025-01-24 10:30:13 · 1897 阅读 · 1 评论 -
揭开ChatGPT面纱(5):使用chat.completions接口实现多轮聊天
openai版本==1.6.1,本博客对应文件夹05。原创 2024-04-22 13:30:00 · 5454 阅读 · 0 评论 -
揭开ChatGPT面纱(4):单轮及多轮文本生成任务实践(completions接口)
openai版本==1.6.1,本博客对应文件夹04在前面的博客中介绍过了OpenAI一共有11个接口,其中completions接口常用于文本生成类任务。下面来对completions接口的参数、使用进行一些介绍。原创 2024-04-22 09:45:00 · 1303 阅读 · 0 评论 -
揭开ChatGPT面纱(3):使用OpenAI进行文本情感分析(embeddings接口)
openai版本==1.6.1,本博客对应文件夹03在这一篇博客中我将使用OpenAI的embeddings接口判断21条服装评价是否是好评。原创 2024-04-21 16:09:54 · 1362 阅读 · 0 评论 -
揭开ChatGPT面纱(2):OpenAI主类源码概览
OpenAI版本==1.6.1在上一篇博客中,我实现并运行了一个OpenAI的demo,我们可以发现,想要使用OpenAI完成一个需求仅需要两个步骤,第一步是 传入参数 配置并声明对象,第二步是 调用接口 实现需求。清楚这两点后,我们接着来看看源码。在openai包中,OpenAI类是核心类,它作为客户端库的入口点,提供了与OpenAI API进行交互的方法和属性。这个类封装了API的各种功能,使得开发者可以通过编写代码来使用OpenAI提供的各种服务,如文本生成、图像生成、模型微调等。下面我将针对Open原创 2024-04-21 10:45:00 · 1441 阅读 · 0 评论 -
揭开ChatGPT面纱(1):准备工作(搭建开发环境运行OpenAI Demo)
本博客对应01文件夹。原创 2024-04-20 18:03:39 · 1275 阅读 · 0 评论 -
AI应用实战3:使用可视化工具进行可视化实践
常用的可视化工具有三个:Matplotlib、Seaborn、Plotly。其中,Matplotlib是最基础的,其他二者的都是基于它进行的封装。Breast Cancer Wisconsin (Diagnostic) 数据集是一个广泛应用在乳腺癌诊断识别领域的医学数据资源,其可通过访问以下链接获取:https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic。原创 2024-04-20 13:59:47 · 1324 阅读 · 0 评论 -
PandasAI的应用与实战解析(二):PandasAI使用流程与功能介绍
PandasAI这个工具最突出的优点就是通过结合了Pandas和生成式LLMs,极大地为开发人员降低了工作量。可以看到,对于开发人员来说实现一个需求需要完成多个步骤。PandasAI 使用生成式 AI 模型来理解和解释自然语言查询,并将其转换为 python 代码和 SQL 查询。然后,它使用代码与数据进行交互,并将结果返回给用户。可以看到,原创 2024-04-13 13:30:21 · 3949 阅读 · 2 评论 -
PandasAI的应用与实战解析(一):环境安装、运行demo
一句话总结的话,PandasAI就是一个结合了Pandas和AI的开源工具,更详细地说,PandasAI 是一款强大的Python库,它使得用户能够以自然语言轻松向各类数据源(如CSV、XLSX、PostgreSQL、MySQL、BigQuery、Databricks及Snowflake等)提出问题。同时,它能有效处理缺失值问题以净化数据集,并通过特征生成进一步提升数据质量。),已经有其他人遇到了和我一样的问题,并给该开源作者提了issue,但是目前这个bug还没有修复,因此需要修改一下demo的代码。原创 2024-04-12 19:00:32 · 2729 阅读 · 3 评论 -
AI应用实战2:使用scikit-learn进行回归任务实战
代码仓库在,本博客对应于02文件夹。原创 2024-04-10 22:05:17 · 855 阅读 · 0 评论 -
AI应用实战1:AI项目实战五大环节
在AI项目实战中,“定义问题”环节是至关重要的第一步,它决定了整个项目的导向和后续实施策略。问题痛点在这个阶段,我们需要深入了解业务场景或实际需求,明确存在的问题或挑战。例如,在医疗领域,问题痛点可能是诊断效率低下,误诊率高;在电商领域,则可能是用户个性化推荐效果不佳,导致转化率低等。识别这些问题痛点,是为AI项目找准发力点。现状分析分析当前的问题是如何产生的,有哪些现有的解决方案以及它们的效果如何。比如,对于上述医疗领域的诊断问题,现状可能是依赖医生个人经验,且病例数据未得到有效利用;原创 2024-04-08 21:17:45 · 1488 阅读 · 0 评论 -
AI应用实战0:一站式机器学习框架——scikit-learn
scikit-learn是一个用于机器学习的Python库,提供了丰富的工具和算法,用于数据预处理、特征选择、模型建立、模型评估和模型部署等机器学习任务。scikit-learn提供了多种模型评估方法,可以帮助评估模型的性能和泛化能力。例如,可以使用交叉验证方法进行模型评估,使用不同的评估指标如准确率、精确率、召回率和F1值等进行模型性能评估。scikit-learn提供了多种经典的监督学习和无监督学习算法,包括线性回归、逻辑回归、决策树、支持向量机、随机森林、聚类、降维等。原创 2024-03-05 19:15:19 · 1188 阅读 · 0 评论