This document presents a practical guide to using network traffic annotations in Chrome.
To make Chrome’s network communication transparent, we would need to be able to provide the following answers:
Besides these requirements, the following information helps users, admins, and help desk:
It should be noted that the technical details of requests are not necessarily important to the users, but in order to provide the intended transparency, we need to show that we have covered all bases and there are no back doors.
We can provide up to date, in-line documentation on origin, intent, payload, and control mechanisms of each network communication. This is done by adding a NetworkTrafficAnnotationTag
to all network communication functions. Please note that as the goal is to specify the intent behind each network request and its payload, this metadata does not need to be transmitted with the request during runtime and it is sufficient to have it in appropriate positions in the code. Having that as an argument of all network communication functions is a mechanism to enforce its existence and showing the users our intent to cover the whole repository.
All network requests are ultimately sending data through sockets or native API functions, but we should note that the concern is about the main intent of the communication and not the implementation details. Therefore we do not need to specify this data separately for each call to each function that is used in the process and it is sufficient that the most rational point of origin would be annotated and the annotation would be passed through the downstream steps. Best practices for choosing annotation code site include where:
Partial Annotations
section for an approach to split annotation.There are cases where requests are received from multiple sources and merged into one connection, like when a socket merges several data frames and sends them together, or a device location is requested by different components, and just one network request is made to fetch it. In these cases, the merge point can ensure that all received requests are properly annotated and just pass one of them to the downstream step. It can also pass a local annotation stating that it is a merged request on behalf of other requests of type X, which were ensured to all have annotations. This decision is driven from the fact that we do not need to transmit the annotation metadata in runtime and enforced annotation arguments are just to ensure that the request is annotated somewhere upstream.
Network traffic annotations are currently enforced on all url requests and socket writes, except for the code which is not compiled on Windows or Linux. This effort may expand to ChromeOS in future and currently there is no plan to expand it to other platforms.
net::NetworkTrafficAnnotationTag
is the main definition for annotations. There are few variants of it that are specified in later sections. The goal is to have one object of this type or its variants as an argument of all functions that create a network request.
Each network traffic annotation should specify the following items, as defined in the NetworkTrafficAnnotation
message of chrome/browser/privacy/traffic_annotation.proto
:
uniqueـid
: A globally unique identifier that must stay unchanged while the network request carries the same semantic meaning. If the network request gets a new meaning, this ID needs to be changed. The purpose of this ID is to give humans a chance to reference NetworkTrafficAnnotations externally even when those change a little bit (e.g. adding a new piece of data that is sent along with a network request). IDs of one component should have a shared prefix so that sorting all NetworkTrafficAnnotations by unique_id groups those that belong to the same component together.source
: These set of fields specify the location of annotation in the source code. These fields are automatically set and do not need specification.semantics
: These set of fields specify meta information about the network request’s content and reason.sender
: What component triggers the request. The components should be human readable and don’t need to reflect the components/ directory. Avoid abbreviations, and use a common value for all annotations in one component.description
: Plaintext description of the network request in language that is understandable by admins (ideally also users). Please avoid acronyms and describe the feature and the feature's value proposition as well.trigger
: What user action triggered the network request. Use a textual description. This should be a human readable string.user_data
: What nature of data is being sent, as enums. Any personally identifiable (PII) data, provided by user or generated by Google, should be pointed out. You can include multiple values, and you may want to supplement this with the data field. All available User data enums can be found here.data
: Textual description of data being sent, for things that aren't covered by user_data enum values. You can also use this field if more context needs to be provided to describe user_data.destination
: Target of the network request. It can be either the website that user visits and interacts with, a Google service, a request that does not go to network and just fetches a local resource, or other endpoints like a service hosting PAC scripts. The distinction between a Google owned service and website can be difficult when the user navigates to google.com or searches with the omnibar. Therefore follow the following guideline: If the source code has hardcoded that the request goes to Google (e.g. for ZeroSuggest), use GOOGLE_OWNED_SERVICE
. If the request can go to other domains and is perceived as a part of a website rather than a native browser feature, use WEBSITE
. Use LOCAL
if the request is processed locally and doesn't go to network. If the request goes to a third-party proxy first and then is forwarded to a Google service, use PROXIED_GOOGLE_OWNED_SERVICE
. Otherwise use OTHER
. If OTHER
is used, please add plain text description in destination_other
field.destination_other
: Human readable description in case the destination points to OTHER
.internal
: Data that is meant to be visible internally, example point of contacts, should be placed inside internal field. This field should not be used in any external reports.contacts
: A person‘s or team’s email address who are point-of-contact for questions, issues, or bugs related to this network request. An OWNERS file may also be specified using the owners
field.last_reviewed
: Date when this annotation was last reviewed in YYYY-MM-DD format.policy
: These set of fields specify the controls that a user may have on disabling or limiting the network request and its trace.cookies_allowed
: Specifies if this request stores and uses cookies or not. Use values YES
or NO
.cookies_store
: If a request sends or stores cookies/channel IDs/... (i.e. if cookies_allowed
is true), we want to know which cookie store is being used. The answer to this question can typically be derived from the URLRequestContext that is being used. The three most common cases will be:cookies_allowed
is false, leave this field unset.Profile::GetRequestContext())
, this means that the user’s normal cookies sent. In this case, put user
here.io_thread()->system_url_request_context_getter())
, put system
here.setting
: Human readable description of how to enable/disable a feature that triggers this network request by a user (e.g. “Disable ‘Use a web service to help resolve spelling errors.’ in settings under Advanced”). Note that settings look different on different platforms, make sure your description works everywhere!chrome_policy
: Policy configuration that disables or limits this network request. This would be a text serialized protobuf of any non-device enterprise policy. See policy list or out/Debug/gen/components/policy/proto/chrome_settings.proto
for the full list of policies.chrome_device_policy
instead for device policies.chrome_device_policy
: Policy configuration that disables or limits this network request. This would be a text serialized protobuf of any device enterprise policy. See components/policy/proto/chrome_device_policy.proto
for the full list of policies.chrome_policy
instead for non-device policies (e.g. user policies).policy_exception_justification
: If there is no policy to disable or limit this request, a justification can be presented here.deprecated_policies
: Policy names disabling or limiting this network request which are currently deprecated. These should be a subset of the policies in the chrome_policy
field. If a policy is removed from the chrome_policy
field, then it should be removed from this field also.comments
: If required, any human readable extra comments.Traffic annotations are kept in code as serialized protobuf. To define a NetworkTrafficAnnotationTag
, you may use the function net::DefineNetworkTrafficAnnotation
, with two arguments, the unique id, and all other fields bundled together as a serialized protobuf string.
net::NetworkTrafficAnnotationTag traffic_annotation = net::DefineNetworkTrafficAnnotation("spellcheck_lookup", R"( semantics { sender: "Online Spellcheck" description: "Chrome can provide smarter spell-checking by sending text you " "type into the browser to Google's servers, allowing you to use " "the same spell-checking technology used by Google products, such " "as Docs. If the feature is enabled, Chrome will send the entire " "contents of text fields as you type in them to Google along with " "the browser’s default language. Google returns a list of " "suggested spellings, which will be displayed in the context menu." trigger: "User types text into a text field or asks to correct a " "misspelled word." internal { contacts { email: "[email protected]" } } user_data { type: USER_CONTENT } data: "Text a user has typed into a text field. No user identifier " "is sent along with the text." destination: GOOGLE_OWNED_SERVICE last_reviewed: "2022-10-17" } policy { cookies_allowed: NO setting: "You can enable or disable this feature via 'Use a web service to " "help resolve spelling errors.' in Chrome's settings under " "Advanced. The feature is disabled by default." chrome_policy { SpellCheckServiceEnabled { SpellCheckServiceEnabled: false } } })");
net::NetworkTrafficAnnotationTag traffic_annotation2 = net::DefineNetworkTrafficAnnotation( "safe_browsing_chunk_backup_request", R"( semantics { sender: "Safe Browsing" description: "Safe Browsing updates its local database of bad sites every 30 " "minutes or so. It aims to keep all users up-to-date with the same " "set of hash-prefixes of bad URLs." trigger: "On a timer, approximately every 30 minutes." data: "The state of the local DB is sent so the server can send just the " "changes. This doesn't include any user data." destination: GOOGLE_OWNED_SERVICE internal { contacts { email: "[email protected]" } } user_data { type: NONE } last_reviewed: "2023-01-01" } policy { cookies_allowed: YES cookies_store: "Safe Browsing cookie store" setting: "Users can disable Safe Browsing by unchecking 'Protect you and " "your device from dangerous sites' in Chromium settings under " "Privacy. The feature is enabled by default." chrome_policy { SafeBrowsingEnabled { policy_options {mode: MANDATORY} SafeBrowsingEnabled: false } } })");
net::NetworkTrafficAnnotationTag bad_traffic_annotation = net::DefineNetworkTrafficAnnotation( ... trigger: "Chrome sends this when [obscure event that is not related to " "anything user-perceivable]." // Please specify the exact user action that results in this request. data: "This sends everything the feature needs to know." // Please be precise, name the data items. If they are too many, name // the sensitive user data and general classes of other data and refer // to a document specifying the details. ... policy_exception_justification: "None." // Check again! Most features can be disabled or limited by a policy. ... })");
You can copy/paste the following template to define an annotation.
net::NetworkTrafficAnnotationTag traffic_annotation = net::DefineNetworkTrafficAnnotation("...", R"( semantics { sender: "..." description: "..." trigger: "..." data: "..." destination: WEBSITE/GOOGLE_OWNED_SERVICE/OTHER } policy { cookies_allowed: NO/YES cookies_store: "..." setting: "..." chrome_policy { [POLICY_NAME] { [POLICY_NAME]: ... } } policy_exception_justification = "..." } comments: "..." )");
There are several checks that should be done on annotations before submitting a change list. These checks include:
tools/traffic_annotation/summary/grouping.xml
. When adding a new annotation, it must also be included in grouping.xml
for reporting purposes (please refer to the Annotations Review).To perform tests prior to submit, one can use the auditor.py
script. It runs over the whole repository, extracts all the annotations from C++ code, and then checks them for correctness.
Running the auditor.py
script requires a build directory in which you just built the chrome
target. You can invoke it like this: vpython3 tools/traffic_annotation/scripts/auditor/auditor.py --build-path=out/Default
Two commit queue trybots test traffic annotations on changed files using the scripts in tools/traffic_annotation/scripts
. To run these tests faster and to avoid spamming the commit queue if an unforeseen error has happened in downstream scripts or tools, they are run in error resilient mode, only on changed files, and using heuristics to decide which files to process. An FYI bot runs more detailed tests on the whole repository and with different switches, to make sure that the heuristics that trybot tests use and the limited scope of tests have not neglected any issues.
Network traffic annotations require review before landing in code and this is enforced through keeping a summary of annotations in tools/traffic_annotation/summary/annotations.xml
. Once a new annotation is added, one is updated, or deleted, this file should also be updated. To update the annotations.xml
file automatically, one can run auditor.py
as specified in presubmit tests. But if it is not possible to do so (e.g., if you are changing the code from an unsupported platform or you don’t have a compiled build directory), the code can be submitted to the trybot and the test on trybot will tell you the required modifications.
In order to help make external reports easier, annotation unique ids should be mentioned in tools/traffic_annotation/summary/grouping.xml
. Once a new annotation is added, or a preexisting annotation's unique id changes, this file should also be updated. When adding a new annotation, make sure it is placed within an appropriate group of grouping.xml
. In the rare case that none of the groups are appropriate, one can create a new group for the annotation; the arrangement of annotations and group names in grouping.xml
may be later updated by a technical writer to better coincide with the external reports.
There are cases where the network traffic annotation cannot be fully specified in one place. For example, in one place we know the trigger of a network request and in another place we know the data that will be sent. In these cases, we prefer that both parts of the annotation appear in context so that they are updated if code changes. Partial annotations help splitting the network traffic annotation into two pieces. In these cases, we call the first part, the partial annotation, and the part the completes it, the completing annotation. Partial annotations and completing annotations do not need to have all annotation fields, but their composition should have all required fields.
To define a partial annotation, one can use net::DefinePartialNetworkTrafficAnnotation
function. Besides the unique id and annotation text, this function requires the unique id of the completing part. For example, a partial annotation that only specifies the semantics part or a request with unique id “omnibox_prefetch_image”, and is completed later using an annotation with unique id “bitmap_fetcher”, can be defined as follows:
net::PartialNetworkTrafficAnnotationTag partial_traffic_annotation = net::DefinePartialNetworkTrafficAnnotation("omnibox_prefetch_image", "bitmap_fetcher", R"( semantics { sender: "Omnibox" Description: "..." Trigger: "..." Data: "..." destination: WEBSITE })");
The cases where several partial annotations may be completed by one completing annotation are called Nx1. This also matches where N=1. To define a completing annotation for such cases, one can use net::CompleteNetworkTrafficAnnotation function. This function receives a unique id, the annotation text, and a net::PartialNetworkTrafficAnnotationTag
object. Here is an example of a completing part for the previous example:
net::NetworkTrafficAnnotationTag traffic_annotation = net::CompleteNetworkTrafficAnnotation("bitmap_fetcher", partial_traffic_annotation, R"( policy { cookies_allowed: YES cookies_store: "user" setting: "..." chrome_policy {...} })");
There are cases where one partial traffic annotation may be completed by different completing annotations. In these cases, net::BranchedCompleteNetworkTrafficAnnotation
function can be used. This function has an extra argument that is common between all branches and is referred to by the partial annotation. For the above examples, if there would be two different ways of completing the received partial annotation, the following the definition can be used:
if (...) { return net::BranchedCompleteNetworkTrafficAnnotation( "bitmap_fetcher_type1", "bitmap_fetcher", partial_traffic_annotation, R"( policy { cookies_allowed: YES cookies_store: "user" setting: "..." chrome_policy {...} })"); } else { return net::BranchedCompleteNetworkTrafficAnnotation( "bitmap_fetcher_type2", "bitmap_fetcher", partial_traffic_annotation, R"( policy { cookies_allowed: YES cookies_store: "system" setting: "..." chrome_policy {...} })");
Please refer to tools/traffic_annotation/sample_traffic_annotation.cc
for more detailed examples.
net::NetworkTrafficAnnotationTag
and net::PartialNetworkTrafficAnnotationTag
are defined with constant internal argument(s), so that once they are created, they cannot be modified. There are very few exceptions that may require modification of the annotation value, like the ones used by mojo interfaces where after serialization, the annotation object is first created, then receives value. In these cases, net::MutableNetworkTrafficAnnotationTag
and net::MutablePartialNetworkTrafficAnnotationTag
can be used which do not have this limitation.
Mutable annotations have a run time check before being converted into normal annotations to ensure their content is valid. Therefore it is suggested that they would be used only if there is no other way around it. Use cases are checked with auditor.py
to ensure proper initialization values for the mutable annotations.
For serialization of network traffic annotation and partial network traffic annotation tags, you can use the mutable mojo interfaces defined in /services/network/public/mojom
.