[libc++] Optimize input_iterator-pair `insert` for std::vector (#113768)

As a follow-up to #113852, this PR optimizes the performance of the
`insert(const_iterator pos, InputIt first, InputIt last)` function for
`input_iterator`-pair inputs in `std::vector` for cases where
reallocation occurs during insertion. Additionally, this optimization
enhances exception safety by replacing the traditional `try-catch`
mechanism with a modern exception guard for the `insert` function.

The optimization targets cases where insertion trigger reallocation. In
scenarios without reallocation, the implementation remains unchanged.

Previous implementation
-----------------------
The previous implementation of `insert` is inefficient in reallocation
scenarios because it performs the following steps separately:
- `reserve()`: This leads to the first round of relocating old
elements to new memory;
- `rotate()`: This leads to the second round of reorganizing the
existing elements;
- Move-forward: Moves the elements after the insertion position to
their final positions.
- Insert: performs the actual insertion.

This approach results in a lot of redundant operations, requiring the
elements to undergo three rounds of relocations/reorganizations to be
placed in their final positions.

Proposed implementation
-----------------------
The proposed implementation jointly optimize the above 4 steps in the
previous implementation such that each element is placed in its final
position in just one round of relocation. Specifically, this
optimization reduces the total cost from 2 relocations + 1 std::rotate
call to just 1 relocation, without needing to call `std::rotate`,
thereby significantly improving overall performance.
6 files changed
tree: 399208c62ebf7bc377d8f7e496d1dd9d1c0404e8
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. offload/
  21. openmp/
  22. polly/
  23. pstl/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-tidy
  29. .git-blame-ignore-revs
  30. .gitattributes
  31. .gitignore
  32. .mailmap
  33. CODE_OF_CONDUCT.md
  34. CONTRIBUTING.md
  35. LICENSE.TXT
  36. pyproject.toml
  37. README.md
  38. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.