[lld-macho] create __TEXT,__unwind_info from __LD,__compact_unwind
Digest the input `__LD,__compact_unwind` and produce the output `__TEXT,__unwind_info`. This is the initial commit with the major functionality.
Successor commits will add handling for ...
* `__TEXT,__eh_frame`
* personalities & LSDA
* `-r` pass-through
Differential Revision: https://reviews.llvm.org/D86805
diff --git a/lld/MachO/UnwindInfoSection.cpp b/lld/MachO/UnwindInfoSection.cpp
new file mode 100644
index 0000000..05848df
--- /dev/null
+++ b/lld/MachO/UnwindInfoSection.cpp
@@ -0,0 +1,284 @@
+//===- UnwindInfoSection.cpp ----------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "UnwindInfoSection.h"
+#include "Config.h"
+#include "InputSection.h"
+#include "MergedOutputSection.h"
+#include "OutputSection.h"
+#include "OutputSegment.h"
+#include "Symbols.h"
+#include "SyntheticSections.h"
+#include "Target.h"
+
+#include "lld/Common/ErrorHandler.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/BinaryFormat/MachO.h"
+
+using namespace llvm;
+using namespace llvm::MachO;
+using namespace lld;
+using namespace lld::macho;
+
+// Compact Unwind format is a Mach-O evolution of DWARF Unwind that
+// optimizes space and exception-time lookup. Most DWARF unwind
+// entries can be replaced with Compact Unwind entries, but the ones
+// that cannot are retained in DWARF form.
+//
+// This comment will address macro-level organization of the pre-link
+// and post-link compact unwind tables. For micro-level organization
+// pertaining to the bitfield layout of the 32-bit compact unwind
+// entries, see libunwind/include/mach-o/compact_unwind_encoding.h
+//
+// Important clarifying factoids:
+//
+// * __LD,__compact_unwind is the compact unwind format for compiler
+// output and linker input. It is never a final output. It could be
+// an intermediate output with the `-r` option which retains relocs.
+//
+// * __TEXT,__unwind_info is the compact unwind format for final
+// linker output. It is never an input.
+//
+// * __TEXT,__eh_frame is the DWARF format for both linker input and output.
+//
+// * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
+// level) by ascending address, and the pages are referenced by an
+// index (1st level) in the section header.
+//
+// * Following the headers in __TEXT,__unwind_info, the bulk of the
+// section contains a vector of compact unwind entries
+// `{functionOffset, encoding}` sorted by ascending `functionOffset`.
+// Adjacent entries with the same encoding can be folded to great
+// advantage, achieving a 3-order-of-magnitude reduction in the
+// number of entries.
+//
+// * The __TEXT,__unwind_info format can accommodate up to 127 unique
+// encodings for the space-efficient compressed format. In practice,
+// fewer than a dozen unique encodings are used by C++ programs of
+// all sizes. Therefore, we don't even bother implementing the regular
+// non-compressed format. Time will tell if anyone in the field ever
+// overflows the 127-encodings limit.
+
+// TODO(gkm): prune __eh_frame entries superseded by __unwind_info
+// TODO(gkm): how do we align the 2nd-level pages?
+
+UnwindInfoSection::UnwindInfoSection()
+ : SyntheticSection(segment_names::text, section_names::unwindInfo) {}
+
+bool UnwindInfoSection::isNeeded() const {
+ return (compactUnwindSection != nullptr);
+}
+
+// Scan the __LD,__compact_unwind entries and compute the space needs of
+// __TEXT,__unwind_info and __TEXT,__eh_frame
+
+void UnwindInfoSection::finalize() {
+ if (compactUnwindSection == nullptr)
+ return;
+
+ // At this point, the address space for __TEXT,__text has been
+ // assigned, so we can relocate the __LD,__compact_unwind entries
+ // into a temporary buffer. Relocation is necessary in order to sort
+ // the CU entries by function address. Sorting is necessary so that
+ // we can fold adjacent CU entries with identical
+ // encoding+personality+lsda. Folding is necessary because it reduces
+ // the number of CU entries by as much as 3 orders of magnitude!
+ compactUnwindSection->finalize();
+ assert(compactUnwindSection->getSize() % sizeof(CompactUnwindEntry64) == 0);
+ size_t cuCount =
+ compactUnwindSection->getSize() / sizeof(CompactUnwindEntry64);
+ cuVector.resize(cuCount);
+ // Relocate all __LD,__compact_unwind entries
+ compactUnwindSection->writeTo(reinterpret_cast<uint8_t *>(cuVector.data()));
+
+ // Rather than sort & fold the 32-byte entries directly, we create a
+ // vector of pointers to entries and sort & fold that instead.
+ cuPtrVector.reserve(cuCount);
+ for (const auto &cuEntry : cuVector)
+ cuPtrVector.emplace_back(&cuEntry);
+ std::sort(cuPtrVector.begin(), cuPtrVector.end(),
+ [](const CompactUnwindEntry64 *a, const CompactUnwindEntry64 *b) {
+ return a->functionAddress < b->functionAddress;
+ });
+
+ // Fold adjacent entries with matching encoding+personality+lsda
+ // We use three iterators on the same cuPtrVector to fold in-situ:
+ // (1) `foldBegin` is the first of a potential sequence of matching entries
+ // (2) `foldEnd` is the first non-matching entry after `foldBegin`.
+ // The semi-open interval [ foldBegin .. foldEnd ) contains a range
+ // entries that can be folded into a single entry and written to ...
+ // (3) `foldWrite`
+ auto foldWrite = cuPtrVector.begin();
+ for (auto foldBegin = cuPtrVector.begin(); foldBegin < cuPtrVector.end();) {
+ auto foldEnd = foldBegin;
+ while (++foldEnd < cuPtrVector.end() &&
+ (*foldBegin)->encoding == (*foldEnd)->encoding &&
+ (*foldBegin)->personality == (*foldEnd)->personality &&
+ (*foldBegin)->lsda == (*foldEnd)->lsda)
+ ;
+ *foldWrite++ = *foldBegin;
+ foldBegin = foldEnd;
+ }
+ cuPtrVector.erase(foldWrite, cuPtrVector.end());
+
+ // Count frequencies of the folded encodings
+ llvm::DenseMap<compact_unwind_encoding_t, size_t> encodingFrequencies;
+ for (auto cuPtrEntry : cuPtrVector)
+ encodingFrequencies[cuPtrEntry->encoding]++;
+ if (encodingFrequencies.size() > UNWIND_INFO_COMMON_ENCODINGS_MAX)
+ error("TODO(gkm): handle common encodings table overflow");
+
+ // Make a table of encodings, sorted by descending frequency
+ for (const auto &frequency : encodingFrequencies)
+ commonEncodings.emplace_back(frequency);
+ std::sort(commonEncodings.begin(), commonEncodings.end(),
+ [](const std::pair<compact_unwind_encoding_t, size_t> &a,
+ const std::pair<compact_unwind_encoding_t, size_t> &b) {
+ if (a.second == b.second)
+ // When frequencies match, secondarily sort on encoding
+ // to maintain parity with validate-unwind-info.py
+ return a.first > b.first;
+ return a.second > b.second;
+ });
+
+ // Split folded encodings into pages, limited by capacity of a page
+ // and the 24-bit range of function offset
+ //
+ // Record the page splits as a vector of iterators on cuPtrVector
+ // such that successive elements form a semi-open interval. E.g.,
+ // page X's bounds are thus: [ pageBounds[X] .. pageBounds[X+1] )
+ //
+ // Note that pageBounds.size() is one greater than the number of
+ // pages, and pageBounds.back() holds the sentinel cuPtrVector.cend()
+ pageBounds.push_back(cuPtrVector.cbegin());
+ // TODO(gkm): cut 1st page entries short to accommodate section headers ???
+ CompactUnwindEntry64 cuEntryKey;
+ for (size_t i = 0;;) {
+ // Limit the search to entries that can fit within a 4 KiB page.
+ const auto pageBegin = pageBounds[0] + i;
+ const auto pageMax =
+ pageBounds[0] +
+ std::min(i + UNWIND_INFO_COMPRESSED_SECOND_LEVEL_ENTRIES_MAX,
+ cuPtrVector.size());
+ // Exclude entries with functionOffset that would overflow 24 bits
+ cuEntryKey.functionAddress = (*pageBegin)->functionAddress +
+ UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
+ const auto pageBreak = std::lower_bound(
+ pageBegin, pageMax, &cuEntryKey,
+ [](const CompactUnwindEntry64 *a, const CompactUnwindEntry64 *b) {
+ return a->functionAddress < b->functionAddress;
+ });
+ pageBounds.push_back(pageBreak);
+ if (pageBreak == cuPtrVector.cend())
+ break;
+ i = pageBreak - cuPtrVector.cbegin();
+ }
+
+ // compute size of __TEXT,__unwind_info section
+ level2PagesOffset =
+ sizeof(unwind_info_section_header) +
+ commonEncodings.size() * sizeof(uint32_t) +
+ personalities.size() * sizeof(uint32_t) +
+ pageBounds.size() * sizeof(unwind_info_section_header_index_entry) +
+ lsdaEntries.size() * sizeof(unwind_info_section_header_lsda_index_entry);
+ unwindInfoSize = level2PagesOffset +
+ (pageBounds.size() - 1) *
+ sizeof(unwind_info_compressed_second_level_page_header) +
+ cuPtrVector.size() * sizeof(uint32_t);
+}
+
+// All inputs are relocated and output adddresses are known, so write!
+
+void UnwindInfoSection::writeTo(uint8_t *buf) const {
+ // section header
+ auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
+ uip->version = 1;
+ uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
+ uip->commonEncodingsArrayCount = commonEncodings.size();
+ uip->personalityArraySectionOffset =
+ uip->commonEncodingsArraySectionOffset +
+ (uip->commonEncodingsArrayCount * sizeof(uint32_t));
+ uip->personalityArrayCount = personalities.size();
+ uip->indexSectionOffset = uip->personalityArraySectionOffset +
+ (uip->personalityArrayCount * sizeof(uint32_t));
+ uip->indexCount = pageBounds.size();
+
+ // Common encodings
+ auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
+ for (const auto &encoding : commonEncodings)
+ *i32p++ = encoding.first;
+
+ // Personalities
+ for (const auto &personality : personalities)
+ *i32p++ = personality;
+
+ // Level-1 index
+ uint32_t lsdaOffset =
+ uip->indexSectionOffset +
+ uip->indexCount * sizeof(unwind_info_section_header_index_entry);
+ uint64_t l2PagesOffset = level2PagesOffset;
+ auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
+ for (size_t i = 0; i < pageBounds.size() - 1; i++) {
+ iep->functionOffset = (*pageBounds[i])->functionAddress;
+ iep->secondLevelPagesSectionOffset = l2PagesOffset;
+ iep->lsdaIndexArraySectionOffset = lsdaOffset;
+ iep++;
+ // TODO(gkm): pad to 4 KiB page boundary ???
+ size_t entryCount = pageBounds[i + 1] - pageBounds[i];
+ uint64_t pageSize = sizeof(unwind_info_section_header_index_entry) +
+ entryCount * sizeof(uint32_t);
+ l2PagesOffset += pageSize;
+ }
+ // Level-1 sentinel
+ const CompactUnwindEntry64 &cuEnd = cuVector.back();
+ iep->functionOffset = cuEnd.functionAddress + cuEnd.functionLength;
+ iep->secondLevelPagesSectionOffset = 0;
+ iep->lsdaIndexArraySectionOffset = lsdaOffset;
+ iep++;
+
+ // LSDAs
+ auto *lep =
+ reinterpret_cast<unwind_info_section_header_lsda_index_entry *>(iep);
+ for (const auto &lsda : lsdaEntries) {
+ lep->functionOffset = lsda.functionOffset;
+ lep->lsdaOffset = lsda.lsdaOffset;
+ }
+
+ // create map from encoding to common-encoding-table index compact
+ // encoding entries use 7 bits to index the common-encoding table
+ size_t i = 0;
+ llvm::DenseMap<compact_unwind_encoding_t, size_t> commonEncodingIndexes;
+ for (const auto &encoding : commonEncodings)
+ commonEncodingIndexes[encoding.first] = i++;
+
+ // Level-2 pages
+ auto *p2p =
+ reinterpret_cast<unwind_info_compressed_second_level_page_header *>(lep);
+ for (size_t i = 0; i < pageBounds.size() - 1; i++) {
+ p2p->kind = UNWIND_SECOND_LEVEL_COMPRESSED;
+ p2p->entryPageOffset =
+ sizeof(unwind_info_compressed_second_level_page_header);
+ p2p->entryCount = pageBounds[i + 1] - pageBounds[i];
+ p2p->encodingsPageOffset =
+ p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
+ p2p->encodingsCount = 0;
+ auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
+ auto cuPtrVectorIt = pageBounds[i];
+ uintptr_t functionAddressBase = (*cuPtrVectorIt)->functionAddress;
+ while (cuPtrVectorIt < pageBounds[i + 1]) {
+ const CompactUnwindEntry64 *cuep = *cuPtrVectorIt++;
+ size_t cueIndex = commonEncodingIndexes.lookup(cuep->encoding);
+ *ep++ = ((cueIndex << UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
+ (cuep->functionAddress - functionAddressBase));
+ }
+ p2p =
+ reinterpret_cast<unwind_info_compressed_second_level_page_header *>(ep);
+ }
+ assert(getSize() ==
+ static_cast<size_t>((reinterpret_cast<uint8_t *>(p2p) - buf)));
+}