[clang][modules] Lazily load by name lookups in module maps (#132853)

Instead of eagerly populating the `clang::ModuleMap` when looking up a
module by name, this patch changes `HeaderSearch` to only load the
modules that are actually used.

This introduces `ModuleMap::findOrLoadModule` which will load modules
from parsed but not loaded module maps. This cannot be used anywhere
that the module loading code calls into as it can create infinite
recursion.

This currently just reparses module maps when looking up a module by
header. This is fine as redeclarations are allowed from the same file,
but future patches will also make looking up a module by header lazy.

This patch changes the shadow.m test to use explicitly built modules and
`#import`. This test and the shadow feature are very brittle and do not
work in general. The test relied on pcm files being left behind by prior
failing clang invocations that were then reused by the last invocation.
If you clean the cache then the last invocation will always fail. This
is because the input module map and the `-fmodule-map-file=` module map
are parsed in the same module scope, and `-fmodule-map-file=` is
forwarded to implicit module builds. That means you are guaranteed to
hit a module redeclaration error if the TU actually imports the module
it is trying to shadow.

This patch changes when we load A2's module map to after the `A` module
has been loaded, which sets the `IsFromModuleFile` bit on `A`. This
means that A2's `A` is skipped entirely instead of creating a shadow
module, and we get textual inclusion. It is possible to construct a case
where this would happen before this patch too.

An upcoming patch in this series will rework shadowing to work in the
general case, but that's only possible once header -> module lookup is
lazy too.
20 files changed
tree: 0a3208ff25d811f89f4341f264be96a2970c0751
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. flang-rt/
  11. libc/
  12. libclc/
  13. libcxx/
  14. libcxxabi/
  15. libunwind/
  16. lld/
  17. lldb/
  18. llvm/
  19. llvm-libgcc/
  20. mlir/
  21. offload/
  22. openmp/
  23. polly/
  24. pstl/
  25. runtimes/
  26. third-party/
  27. utils/
  28. .clang-format
  29. .clang-format-ignore
  30. .clang-tidy
  31. .git-blame-ignore-revs
  32. .gitattributes
  33. .gitignore
  34. .mailmap
  35. CODE_OF_CONDUCT.md
  36. CONTRIBUTING.md
  37. LICENSE.TXT
  38. pyproject.toml
  39. README.md
  40. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.