Improve loop fusion algorithm by using a memref dependence graph.
Fixed TODO for reduction fusion unit test.
PiperOrigin-RevId: 226277226
diff --git a/mlir/lib/Transforms/LoopFusion.cpp b/mlir/lib/Transforms/LoopFusion.cpp
index 521fca8..6393fa6 100644
--- a/mlir/lib/Transforms/LoopFusion.cpp
+++ b/mlir/lib/Transforms/LoopFusion.cpp
@@ -130,24 +130,270 @@
}
};
-// GreedyFusionPolicy greedily fuses loop nests which have a producer/consumer
+// MemRefDependenceGraph is a graph data structure where graph nodes are
+// top-level statements in an MLFunction which contain load/store ops, and edges
+// are memref dependences between the nodes.
+// TODO(andydavis) Add a depth parameter to dependence graph construction.
+struct MemRefDependenceGraph {
+public:
+ // Node represents a node in the graph. A Node is either an entire loop nest
+ // rooted at the top level which contains loads/stores, or a top level
+ // load/store.
+ struct Node {
+ // The unique identifier of this node in the graph.
+ unsigned id;
+ // The top-level statment which is (or contains) loads/stores.
+ Statement *stmt;
+ // List of load op stmts.
+ SmallVector<OperationStmt *, 4> loads;
+ // List of store op stmts.
+ SmallVector<OperationStmt *, 4> stores;
+ Node(unsigned id, Statement *stmt) : id(id), stmt(stmt) {}
+
+ // Returns the load op count for 'memref'.
+ unsigned getLoadOpCount(MLValue *memref) {
+ unsigned loadOpCount = 0;
+ for (auto *loadOpStmt : loads) {
+ if (memref == cast<MLValue>(loadOpStmt->cast<LoadOp>()->getMemRef()))
+ ++loadOpCount;
+ }
+ return loadOpCount;
+ }
+
+ // Returns the store op count for 'memref'.
+ unsigned getStoreOpCount(MLValue *memref) {
+ unsigned storeOpCount = 0;
+ for (auto *storeOpStmt : stores) {
+ if (memref == cast<MLValue>(storeOpStmt->cast<StoreOp>()->getMemRef()))
+ ++storeOpCount;
+ }
+ return storeOpCount;
+ }
+ };
+
+ // Edge represents a memref data dependece between nodes in the graph.
+ struct Edge {
+ // The id of the node at the other end of the edge.
+ unsigned id;
+ // The memref on which this edge represents a dependence.
+ MLValue *memref;
+ };
+
+ // Map from node id to Node.
+ DenseMap<unsigned, Node> nodes;
+ // Map from node id to list of input edges.
+ DenseMap<unsigned, SmallVector<Edge, 2>> inEdges;
+ // Map from node id to list of output edges.
+ DenseMap<unsigned, SmallVector<Edge, 2>> outEdges;
+
+ MemRefDependenceGraph() {}
+
+ // Initializes the dependence graph based on operations in 'f'.
+ // Returns true on success, false otherwise.
+ bool init(MLFunction *f);
+
+ // Returns the graph node for 'id'.
+ Node *getNode(unsigned id) {
+ auto it = nodes.find(id);
+ assert(it != nodes.end());
+ return &it->second;
+ }
+
+ // Adds an edge from node 'srcId' to node 'dstId' for 'memref'.
+ void addEdge(unsigned srcId, unsigned dstId, MLValue *memref) {
+ outEdges[srcId].push_back({dstId, memref});
+ inEdges[dstId].push_back({srcId, memref});
+ }
+
+ // Removes an edge from node 'srcId' to node 'dstId' for 'memref'.
+ void removeEdge(unsigned srcId, unsigned dstId, MLValue *memref) {
+ assert(inEdges.count(dstId) > 0);
+ assert(outEdges.count(srcId) > 0);
+ // Remove 'srcId' from 'inEdges[dstId]'.
+ for (auto it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) {
+ if ((*it).id == srcId && (*it).memref == memref) {
+ inEdges[dstId].erase(it);
+ break;
+ }
+ }
+ // Remove 'dstId' from 'outEdges[srcId]'.
+ for (auto it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) {
+ if ((*it).id == dstId && (*it).memref == memref) {
+ outEdges[srcId].erase(it);
+ break;
+ }
+ }
+ }
+
+ // Returns the input edge count for node 'id' and 'memref'.
+ unsigned getInEdgeCount(unsigned id, MLValue *memref) {
+ unsigned inEdgeCount = 0;
+ if (inEdges.count(id) > 0)
+ for (auto &inEdge : inEdges[id])
+ if (inEdge.memref == memref)
+ ++inEdgeCount;
+ return inEdgeCount;
+ }
+
+ // Returns the output edge count for node 'id' and 'memref'.
+ unsigned getOutEdgeCount(unsigned id, MLValue *memref) {
+ unsigned outEdgeCount = 0;
+ if (outEdges.count(id) > 0)
+ for (auto &outEdge : outEdges[id])
+ if (outEdge.memref == memref)
+ ++outEdgeCount;
+ return outEdgeCount;
+ }
+
+ // Returns the min node id of all output edges from node 'id'.
+ unsigned getMinOutEdgeNodeId(unsigned id) {
+ unsigned minId = std::numeric_limits<unsigned>::max();
+ if (outEdges.count(id) > 0)
+ for (auto &outEdge : outEdges[id])
+ minId = std::min(minId, outEdge.id);
+ return minId;
+ }
+
+ // Updates edge mappings from node 'srcId' to node 'dstId' and removes
+ // state associated with node 'srcId'.
+ void updateEdgesAndRemoveSrcNode(unsigned srcId, unsigned dstId) {
+ // For each edge in 'inEdges[srcId]': add new edge remaping to 'dstId'.
+ if (inEdges.count(srcId) > 0) {
+ SmallVector<Edge, 2> oldInEdges = inEdges[srcId];
+ for (auto &inEdge : oldInEdges) {
+ // Remove edge from 'inEdge.id' to 'srcId'.
+ removeEdge(inEdge.id, srcId, inEdge.memref);
+ // Add edge from 'inEdge.id' to 'dstId'.
+ addEdge(inEdge.id, dstId, inEdge.memref);
+ }
+ }
+ // For each edge in 'outEdges[srcId]': add new edge remaping to 'dstId'.
+ if (outEdges.count(srcId) > 0) {
+ SmallVector<Edge, 2> oldOutEdges = outEdges[srcId];
+ for (auto &outEdge : oldOutEdges) {
+ // Remove edge from 'srcId' to 'outEdge.id'.
+ removeEdge(srcId, outEdge.id, outEdge.memref);
+ // Add edge from 'dstId' to 'outEdge.id' (if 'outEdge.id' != 'dstId').
+ if (outEdge.id != dstId)
+ addEdge(dstId, outEdge.id, outEdge.memref);
+ }
+ }
+ // Remove 'srcId' from graph state.
+ inEdges.erase(srcId);
+ outEdges.erase(srcId);
+ nodes.erase(srcId);
+ }
+
+ // Adds ops in 'loads' and 'stores' to node at 'id'.
+ void addToNode(unsigned id, const SmallVectorImpl<OperationStmt *> &loads,
+ const SmallVectorImpl<OperationStmt *> &stores) {
+ Node *node = getNode(id);
+ for (auto *loadOpStmt : loads)
+ node->loads.push_back(loadOpStmt);
+ for (auto *storeOpStmt : stores)
+ node->stores.push_back(storeOpStmt);
+ }
+
+ void print(raw_ostream &os) const {
+ os << "\nMemRefDependenceGraph\n";
+ os << "\nNodes:\n";
+ for (auto &idAndNode : nodes) {
+ os << "Node: " << idAndNode.first << "\n";
+ auto it = inEdges.find(idAndNode.first);
+ if (it != inEdges.end()) {
+ for (const auto &e : it->second)
+ os << " InEdge: " << e.id << " " << e.memref << "\n";
+ }
+ it = outEdges.find(idAndNode.first);
+ if (it != outEdges.end()) {
+ for (const auto &e : it->second)
+ os << " OutEdge: " << e.id << " " << e.memref << "\n";
+ }
+ }
+ }
+ void dump() const { print(llvm::errs()); }
+};
+
+// Intializes the data dependence graph by walking statements in 'f'.
+// Assigns each node in the graph a node id based on program order in 'f'.
+// TODO(andydavis) Add support for taking a StmtBlock arg to construct the
+// dependence graph at a different depth.
+bool MemRefDependenceGraph::init(MLFunction *f) {
+ unsigned id = 0;
+ DenseMap<MLValue *, SetVector<unsigned>> memrefAccesses;
+ for (auto &stmt : *f) {
+ if (auto *forStmt = dyn_cast<ForStmt>(&stmt)) {
+ // Create graph node 'id' to represent top-level 'forStmt' and record
+ // all loads and store accesses it contains.
+ LoopNestStateCollector collector;
+ collector.walkForStmt(forStmt);
+ // Return false if IfStmts are found (not currently supported).
+ if (collector.hasIfStmt)
+ return false;
+ Node node(id++, &stmt);
+ for (auto *opStmt : collector.loadOpStmts) {
+ node.loads.push_back(opStmt);
+ auto *memref = cast<MLValue>(opStmt->cast<LoadOp>()->getMemRef());
+ memrefAccesses[memref].insert(node.id);
+ }
+ for (auto *opStmt : collector.storeOpStmts) {
+ node.stores.push_back(opStmt);
+ auto *memref = cast<MLValue>(opStmt->cast<StoreOp>()->getMemRef());
+ memrefAccesses[memref].insert(node.id);
+ }
+ nodes.insert({node.id, node});
+ }
+ if (auto *opStmt = dyn_cast<OperationStmt>(&stmt)) {
+ if (auto loadOp = opStmt->dyn_cast<LoadOp>()) {
+ // Create graph node for top-level load op.
+ Node node(id++, &stmt);
+ node.loads.push_back(opStmt);
+ auto *memref = cast<MLValue>(opStmt->cast<LoadOp>()->getMemRef());
+ memrefAccesses[memref].insert(node.id);
+ nodes.insert({node.id, node});
+ }
+ if (auto storeOp = opStmt->dyn_cast<StoreOp>()) {
+ // Create graph node for top-level store op.
+ Node node(id++, &stmt);
+ node.stores.push_back(opStmt);
+ auto *memref = cast<MLValue>(opStmt->cast<StoreOp>()->getMemRef());
+ memrefAccesses[memref].insert(node.id);
+ nodes.insert({node.id, node});
+ }
+ }
+ // Return false if IfStmts are found (not currently supported).
+ if (isa<IfStmt>(&stmt))
+ return false;
+ }
+
+ // Walk memref access lists and add graph edges between dependent nodes.
+ for (auto &memrefAndList : memrefAccesses) {
+ unsigned n = memrefAndList.second.size();
+ for (unsigned i = 0; i < n; ++i) {
+ unsigned srcId = memrefAndList.second[i];
+ bool srcHasStore =
+ getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
+ for (unsigned j = i + 1; j < n; ++j) {
+ unsigned dstId = memrefAndList.second[j];
+ bool dstHasStore =
+ getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
+ if (srcHasStore || dstHasStore)
+ addEdge(srcId, dstId, memrefAndList.first);
+ }
+ }
+ }
+ return true;
+}
+
+// GreedyFusion greedily fuses loop nests which have a producer/consumer
// relationship on a memref, with the goal of improving locality. Currently,
// this the producer/consumer relationship is required to be unique in the
// MLFunction (there are TODOs to relax this constraint in the future).
//
// The steps of the algorithm are as follows:
//
-// *) Initialize. While visiting each statement in the MLFunction do:
-// *) Assign each top-level ForStmt a 'position' which is its initial
-// position in the MLFunction's StmtBlock at the start of the pass.
-// *) Gather memref load/store state aggregated by top-level statement. For
-// example, all loads and stores contained in a loop nest are aggregated
-// under the loop nest's top-level ForStmt.
-// *) Add each top-level ForStmt to a worklist.
-//
-// *) Run. The algorithm processes the worklist with the following steps:
-// *) The worklist is processed in reverse order (starting from the last
-// top-level ForStmt in the MLFunction).
+// *) A worklist is initialized with node ids from the dependence graph.
+// *) For each node id in the worklist:
// *) Pop a ForStmt of the worklist. This 'dstForStmt' will be a candidate
// destination ForStmt into which fusion will be attempted.
// *) Add each LoadOp currently in 'dstForStmt' into list 'dstLoadOps'.
@@ -157,7 +403,7 @@
// *) Check if dependences would be violated by the fusion. For example,
// the src loop nest may load from memrefs which are different than
// the producer-consumer memref between src and dest loop nests.
-// *) Get a computation slice of 'srcLoopNest', which adjust its loop
+// *) Get a computation slice of 'srcLoopNest', which adjusts its loop
// bounds to be functions of 'dstLoopNest' IVs and symbols.
// *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
// just before the dst load op user.
@@ -168,268 +414,112 @@
//
// Given a graph where top-level statements are vertices in the set 'V' and
// edges in the set 'E' are dependences between vertices, this algorithm
-// takes O(V) time for initialization, and has runtime O(V * E).
-// TODO(andydavis) Reduce this time complexity to O(V + E).
+// takes O(V) time for initialization, and has runtime O(V + E).
//
-// This greedy algorithm is not 'maximally' but there is a TODO to fix this.
+// This greedy algorithm is not 'maximal' due to the current restriction of
+// fusing along single producer consumer edges, but there is a TODO to fix this.
//
// TODO(andydavis) Experiment with other fusion policies.
-struct GreedyFusionPolicy {
- // Convenience wrapper with information about 'stmt' ready to access.
- struct StmtInfo {
- Statement *stmt;
- bool isOrContainsIfStmt = false;
- };
- // The worklist of top-level loop nest positions.
+// TODO(andydavis) Add support for fusing for input reuse (perhaps by
+// constructing a graph with edges which represent loads from the same memref
+// in two different loop nestst.
+struct GreedyFusion {
+public:
+ MemRefDependenceGraph *mdg;
SmallVector<unsigned, 4> worklist;
- // Mapping from top-level position to StmtInfo.
- DenseMap<unsigned, StmtInfo> posToStmtInfo;
- // Mapping from memref MLValue to set of top-level positions of loop nests
- // which contain load ops on that memref.
- DenseMap<MLValue *, DenseSet<unsigned>> memrefToLoadPosSet;
- // Mapping from memref MLValue to set of top-level positions of loop nests
- // which contain store ops on that memref.
- DenseMap<MLValue *, DenseSet<unsigned>> memrefToStorePosSet;
- // Mapping from top-level loop nest to the set of load ops it contains.
- DenseMap<ForStmt *, SetVector<OperationStmt *>> forStmtToLoadOps;
- // Mapping from top-level loop nest to the set of store ops it contains.
- DenseMap<ForStmt *, SetVector<OperationStmt *>> forStmtToStoreOps;
- GreedyFusionPolicy(MLFunction *f) { init(f); }
+ GreedyFusion(MemRefDependenceGraph *mdg) : mdg(mdg) {
+ // Initialize worklist with nodes from 'mdg'.
+ worklist.resize(mdg->nodes.size());
+ std::iota(worklist.begin(), worklist.end(), 0);
+ }
void run() {
- if (hasIfStmts())
- return;
-
while (!worklist.empty()) {
- // Pop the position of a loop nest into which fusion will be attempted.
- unsigned dstPos = worklist.back();
+ unsigned dstId = worklist.back();
worklist.pop_back();
- // Skip if 'dstPos' is not tracked (was fused into another loop nest).
- if (posToStmtInfo.count(dstPos) == 0)
+ // Skip if this node was removed (fused into another node).
+ if (mdg->nodes.count(dstId) == 0)
continue;
- // Get the top-level ForStmt at 'dstPos'.
- auto *dstForStmt = getForStmtAtPos(dstPos);
- // Skip if this ForStmt contains no load ops.
- if (forStmtToLoadOps.count(dstForStmt) == 0)
+ // Get 'dstNode' into which to attempt fusion.
+ auto *dstNode = mdg->getNode(dstId);
+ // Skip if 'dstNode' is not a loop nest.
+ if (!isa<ForStmt>(dstNode->stmt))
continue;
- // Greedy Policy: iterate through load ops in 'dstForStmt', greedily
- // fusing in src loop nests which have a single store op on the same
- // memref, until a fixed point is reached where there is nothing left to
- // fuse.
- SetVector<OperationStmt *> dstLoadOps = forStmtToLoadOps[dstForStmt];
- while (!dstLoadOps.empty()) {
- auto *dstLoadOpStmt = dstLoadOps.pop_back_val();
-
- auto dstLoadOp = dstLoadOpStmt->cast<LoadOp>();
- auto *memref = cast<MLValue>(dstLoadOp->getMemRef());
- // Skip if not single src store / dst load pair on 'memref'.
- if (memrefToLoadPosSet[memref].size() != 1 ||
- memrefToStorePosSet[memref].size() != 1)
+ SmallVector<OperationStmt *, 4> loads = dstNode->loads;
+ while (!loads.empty()) {
+ auto *dstLoadOpStmt = loads.pop_back_val();
+ auto *memref =
+ cast<MLValue>(dstLoadOpStmt->cast<LoadOp>()->getMemRef());
+ // Skip 'dstLoadOpStmt' if multiple loads to 'memref' in 'dstNode'.
+ if (dstNode->getLoadOpCount(memref) != 1)
continue;
- unsigned srcPos = *memrefToStorePosSet[memref].begin();
- if (srcPos >= dstPos)
+ // Skip if no input edges along which to fuse.
+ if (mdg->inEdges.count(dstId) == 0)
continue;
- auto *srcForStmt = getForStmtAtPos(srcPos);
- // Skip if 'srcForStmt' has more than one store op.
- if (forStmtToStoreOps[srcForStmt].size() > 1)
- continue;
- // Skip if fusion would violated dependences between 'memref' access
- // for loop nests between 'srcPos' and 'dstPos':
- // For each src load op: check for store ops in range (srcPos, dstPos).
- // For each src store op: check for load ops in range (srcPos, dstPos).
- if (moveWouldViolateDependences(srcPos, dstPos))
- continue;
- auto *srcStoreOpStmt = forStmtToStoreOps[srcForStmt].front();
- // Build fusion candidate out of 'srcStoreOpStmt' and 'dstLoadOpStmt'.
- FusionCandidate candidate =
- buildFusionCandidate(srcStoreOpStmt, dstLoadOpStmt);
- // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
- auto *sliceLoopNest = mlir::insertBackwardComputationSlice(
- &candidate.srcAccess, &candidate.dstAccess);
- if (sliceLoopNest != nullptr) {
- // Remove 'srcPos' mappings from 'state'.
- moveAccessesAndRemovePos(srcPos, dstPos);
- // Record all load/store accesses in 'sliceLoopNest' at 'dstPos'.
- LoopNestStateCollector collector;
- collector.walkForStmt(sliceLoopNest);
- // Record mappings for loads and stores from 'collector'.
- for (auto *opStmt : collector.loadOpStmts) {
- addLoadOpStmtAt(dstPos, opStmt, dstForStmt);
- // Add newly fused load ops to 'dstLoadOps' to be considered for
- // fusion on subsequent iterations.
- dstLoadOps.insert(opStmt);
+ // Iterate through in edges for 'dstId'.
+ for (auto &srcEdge : mdg->inEdges[dstId]) {
+ // Skip 'srcEdge' if not for 'memref'.
+ if (srcEdge.memref != memref)
+ continue;
+ auto *srcNode = mdg->getNode(srcEdge.id);
+ // Skip if 'srcNode' is not a loop nest.
+ if (!isa<ForStmt>(srcNode->stmt))
+ continue;
+ // Skip if 'srcNode' has more than one store to 'memref'.
+ if (srcNode->getStoreOpCount(memref) != 1)
+ continue;
+ // Skip 'srcNode' if it has out edges on 'memref' other than 'dstId'.
+ if (mdg->getOutEdgeCount(srcNode->id, memref) != 1)
+ continue;
+ // Skip 'srcNode' if it has in dependence edges. NOTE: This is overly
+ // TODO(andydavis) Track dependence type with edges, and just check
+ // for WAW dependence edge here.
+ if (mdg->getInEdgeCount(srcNode->id, memref) != 0)
+ continue;
+ // Skip if 'srcNode' has out edges to other memrefs after 'dstId'.
+ if (mdg->getMinOutEdgeNodeId(srcNode->id) != dstId)
+ continue;
+ // Get unique 'srcNode' store op.
+ auto *srcStoreOpStmt = srcNode->stores.front();
+ // Build fusion candidate out of 'srcStoreOpStmt' and 'dstLoadOpStmt'.
+ FusionCandidate candidate =
+ buildFusionCandidate(srcStoreOpStmt, dstLoadOpStmt);
+ // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
+ auto *sliceLoopNest = mlir::insertBackwardComputationSlice(
+ &candidate.srcAccess, &candidate.dstAccess);
+ if (sliceLoopNest != nullptr) {
+ // Remove edges between 'srcNode' and 'dstNode' and remove 'srcNode'
+ mdg->updateEdgesAndRemoveSrcNode(srcNode->id, dstNode->id);
+ // Record all load/store accesses in 'sliceLoopNest' at 'dstPos'.
+ LoopNestStateCollector collector;
+ collector.walkForStmt(sliceLoopNest);
+ mdg->addToNode(dstId, collector.loadOpStmts,
+ collector.storeOpStmts);
+ // Add new load ops to current Node load op list 'loads' to
+ // continue fusing based on new operands.
+ for (auto *loadOpStmt : collector.loadOpStmts)
+ loads.push_back(loadOpStmt);
+ // Promote single iteration loops to single IV value.
+ for (auto *forStmt : collector.forStmts) {
+ promoteIfSingleIteration(forStmt);
+ }
+ // Remove old src loop nest.
+ cast<ForStmt>(srcNode->stmt)->erase();
}
- for (auto *opStmt : collector.storeOpStmts) {
- addStoreOpStmtAt(dstPos, opStmt, dstForStmt);
- }
- for (auto *forStmt : collector.forStmts) {
- promoteIfSingleIteration(forStmt);
- }
- // Remove old src loop nest.
- srcForStmt->erase();
}
}
}
}
-
- // Walk MLFunction 'f' assigning each top-level statement a position, and
- // gathering state on load and store ops.
- void init(MLFunction *f) {
- unsigned pos = 0;
- for (auto &stmt : *f) {
- if (auto *forStmt = dyn_cast<ForStmt>(&stmt)) {
- // Record all loads and store accesses in 'forStmt' at 'pos'.
- LoopNestStateCollector collector;
- collector.walkForStmt(forStmt);
- // Create StmtInfo for 'forStmt' for top-level loop nests.
- addStmtInfoAt(pos, forStmt, collector.hasIfStmt);
- // Record mappings for loads and stores from 'collector'.
- for (auto *opStmt : collector.loadOpStmts) {
- addLoadOpStmtAt(pos, opStmt, forStmt);
- }
- for (auto *opStmt : collector.storeOpStmts) {
- addStoreOpStmtAt(pos, opStmt, forStmt);
- }
- // Add 'pos' associated with 'forStmt' to worklist.
- worklist.push_back(pos);
- }
- if (auto *opStmt = dyn_cast<OperationStmt>(&stmt)) {
- if (auto loadOp = opStmt->dyn_cast<LoadOp>()) {
- // Create StmtInfo for top-level load op.
- addStmtInfoAt(pos, &stmt, /*hasIfStmt=*/false);
- addLoadOpStmtAt(pos, opStmt, /*containingForStmt=*/nullptr);
- }
- if (auto storeOp = opStmt->dyn_cast<StoreOp>()) {
- // Create StmtInfo for top-level store op.
- addStmtInfoAt(pos, &stmt, /*hasIfStmt=*/false);
- addStoreOpStmtAt(pos, opStmt, /*containingForStmt=*/nullptr);
- }
- }
- if (auto *ifStmt = dyn_cast<IfStmt>(&stmt)) {
- addStmtInfoAt(pos, &stmt, /*hasIfStmt=*/true);
- }
- ++pos;
- }
- }
-
- // Check if fusing loop nest at 'srcPos' into the loop nest at 'dstPos'
- // would violated any dependences w.r.t other loop nests in that range.
- bool moveWouldViolateDependences(unsigned srcPos, unsigned dstPos) {
- // Lookup src ForStmt at 'srcPos'.
- auto *srcForStmt = getForStmtAtPos(srcPos);
- // For each src load op: check for store ops in range (srcPos, dstPos).
- if (forStmtToLoadOps.count(srcForStmt) > 0) {
- for (auto *opStmt : forStmtToLoadOps[srcForStmt]) {
- auto loadOp = opStmt->cast<LoadOp>();
- auto *memref = cast<MLValue>(loadOp->getMemRef());
- for (unsigned pos = srcPos + 1; pos < dstPos; ++pos) {
- if (memrefToStorePosSet.count(memref) > 0 &&
- memrefToStorePosSet[memref].count(pos) > 0)
- return true;
- }
- }
- }
- // For each src store op: check for load ops in range (srcPos, dstPos).
- if (forStmtToStoreOps.count(srcForStmt) > 0) {
- for (auto *opStmt : forStmtToStoreOps[srcForStmt]) {
- auto storeOp = opStmt->cast<StoreOp>();
- auto *memref = cast<MLValue>(storeOp->getMemRef());
- for (unsigned pos = srcPos + 1; pos < dstPos; ++pos) {
- if (memrefToLoadPosSet.count(memref) > 0 &&
- memrefToLoadPosSet[memref].count(pos) > 0)
- return true;
- }
- }
- }
- return false;
- }
-
- // Update mappings of memref loads and stores at 'srcPos' to 'dstPos'.
- void moveAccessesAndRemovePos(unsigned srcPos, unsigned dstPos) {
- // Lookup ForStmt at 'srcPos'.
- auto *srcForStmt = getForStmtAtPos(srcPos);
- // Move load op accesses from src to dst.
- if (forStmtToLoadOps.count(srcForStmt) > 0) {
- for (auto *opStmt : forStmtToLoadOps[srcForStmt]) {
- auto loadOp = opStmt->cast<LoadOp>();
- auto *memref = cast<MLValue>(loadOp->getMemRef());
- // Remove 'memref' to 'srcPos' mapping.
- memrefToLoadPosSet[memref].erase(srcPos);
- }
- }
- // Move store op accesses from src to dst.
- if (forStmtToStoreOps.count(srcForStmt) > 0) {
- for (auto *opStmt : forStmtToStoreOps[srcForStmt]) {
- auto storeOp = opStmt->cast<StoreOp>();
- auto *memref = cast<MLValue>(storeOp->getMemRef());
- // Remove 'memref' to 'srcPos' mapping.
- memrefToStorePosSet[memref].erase(srcPos);
- }
- }
- // Remove old state.
- forStmtToLoadOps.erase(srcForStmt);
- forStmtToStoreOps.erase(srcForStmt);
- posToStmtInfo.erase(srcPos);
- }
-
- ForStmt *getForStmtAtPos(unsigned pos) {
- assert(posToStmtInfo.count(pos) > 0);
- assert(isa<ForStmt>(posToStmtInfo[pos].stmt));
- return cast<ForStmt>(posToStmtInfo[pos].stmt);
- }
-
- void addStmtInfoAt(unsigned pos, Statement *stmt, bool hasIfStmt) {
- StmtInfo stmtInfo;
- stmtInfo.stmt = stmt;
- stmtInfo.isOrContainsIfStmt = hasIfStmt;
- // Add mapping from 'pos' to StmtInfo for 'forStmt'.
- posToStmtInfo[pos] = stmtInfo;
- }
-
- // Adds the following mappings:
- // *) 'containingForStmt' to load 'opStmt'
- // *) 'memref' of load 'opStmt' to 'topLevelPos'.
- void addLoadOpStmtAt(unsigned topLevelPos, OperationStmt *opStmt,
- ForStmt *containingForStmt) {
- if (containingForStmt != nullptr) {
- // Add mapping from 'containingForStmt' to 'opStmt' for load op.
- forStmtToLoadOps[containingForStmt].insert(opStmt);
- }
- auto loadOp = opStmt->cast<LoadOp>();
- auto *memref = cast<MLValue>(loadOp->getMemRef());
- // Add mapping from 'memref' to 'topLevelPos' for load.
- memrefToLoadPosSet[memref].insert(topLevelPos);
- }
-
- // Adds the following mappings:
- // *) 'containingForStmt' to store 'opStmt'
- // *) 'memref' of store 'opStmt' to 'topLevelPos'.
- void addStoreOpStmtAt(unsigned topLevelPos, OperationStmt *opStmt,
- ForStmt *containingForStmt) {
- if (containingForStmt != nullptr) {
- // Add mapping from 'forStmt' to 'opStmt' for store op.
- forStmtToStoreOps[containingForStmt].insert(opStmt);
- }
- auto storeOp = opStmt->cast<StoreOp>();
- auto *memref = cast<MLValue>(storeOp->getMemRef());
- // Add mapping from 'memref' to 'topLevelPos' for store.
- memrefToStorePosSet[memref].insert(topLevelPos);
- }
-
- bool hasIfStmts() {
- for (auto &pair : posToStmtInfo)
- if (pair.second.isOrContainsIfStmt)
- return true;
- return false;
- }
};
} // end anonymous namespace
PassResult LoopFusion::runOnMLFunction(MLFunction *f) {
- GreedyFusionPolicy(f).run();
+ MemRefDependenceGraph g;
+ if (g.init(f))
+ GreedyFusion(&g).run();
return success();
}