Entropic: Boosting LibFuzzer Performance

Summary:
This is collaboration between Marcel Boehme @ Monash, Australia and Valentin Manès plus Sang Kil Cha @ KAIST, South Korea.

We have made a few modifications to boost LibFuzzer performance by changing how weights are assigned to the seeds in the corpus. Essentially, seeds that reveal more "information" about globally rare features are assigned a higher weight. Our results on the Fuzzer Test Suite seem quite promising. In terms of bug finding, our Entropic patch usually finds the same errors much faster and in more runs. In terms of coverage, our version Entropic achieves the same coverage in less than half the time for the majority of subjects. For the lack of space, we shared more detailed performance results directly with @kcc. We'll publish the preprint with all the technical details as soon as it is accepted. Happy to share if you drop us an email.

There should be plenty of opportunities to optimise further. For instance, while Entropic achieves the same coverage in less than half the time, Entropic has a much lower #execs per second. We ran the perf-tool and found a few performance bottlenecks.

Thanks for open-sourcing LibFuzzer (and the entire LLVM Compiler Infrastructure)! This has been such a tremendous help to my research.

Patch By: Marcel Boehme

Reviewers: kcc, metzman, morehouse, Dor1s, vitalybuka

Reviewed By: kcc

Subscribers: dgg5503, Valentin, llvm-commits, kcc

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73776
6 files changed
tree: 6cafffe95803cc6e81e76825146178420b479ebe
  1. clang/
  2. clang-tools-extra/
  3. compiler-rt/
  4. debuginfo-tests/
  5. flang/
  6. libc/
  7. libclc/
  8. libcxx/
  9. libcxxabi/
  10. libunwind/
  11. lld/
  12. lldb/
  13. llvm/
  14. mlir/
  15. openmp/
  16. parallel-libs/
  17. polly/
  18. pstl/
  19. utils/
  20. .arcconfig
  21. .arclint
  22. .clang-format
  23. .clang-tidy
  24. .git-blame-ignore-revs
  25. .gitignore
  26. CONTRIBUTING.md
  27. README.md
README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build . [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.