commit | eef1d7e3776a4eb235012076f40b8ecc0723afce | [log] [tgz] |
---|---|---|
author | Alexander Pivovarov <[email protected]> | Fri Aug 02 07:22:11 2024 |
committer | GitHub <[email protected]> | Fri Aug 02 07:22:11 2024 |
tree | 339d111dd1434c5cdfdfa0093c4d0f92fc8c48ad | |
parent | e9c20b9132c93baaaf78a070fa4cd0a853ca5e65 [diff] |
[MLIR] Add f8E3M4 IEEE 754 type (#101230) This PR adds `f8E3M4` type to mlir. `f8E3M4` type follows IEEE 754 convention ```c f8E3M4 (IEEE 754) - Exponent bias: 3 - Maximum stored exponent value: 6 (binary 110) - Maximum unbiased exponent value: 6 - 3 = 3 - Minimum stored exponent value: 1 (binary 001) - Minimum unbiased exponent value: 1 − 3 = −2 - Precision specifies the total number of bits used for the significand (mantissa), including implicit leading integer bit = 4 + 1 = 5 - Follows IEEE 754 conventions for representation of special values - Has Positive and Negative zero - Has Positive and Negative infinity - Has NaNs Additional details: - Max exp (unbiased): 3 - Min exp (unbiased): -2 - Infinities (+/-): S.111.0000 - Zeros (+/-): S.000.0000 - NaNs: S.111.{0,1}⁴ except S.111.0000 - Max normal number: S.110.1111 = +/-2^(6-3) x (1 + 15/16) = +/-2^3 x 31 x 2^(-4) = +/-15.5 - Min normal number: S.001.0000 = +/-2^(1-3) x (1 + 0) = +/-2^(-2) - Max subnormal number: S.000.1111 = +/-2^(-2) x 15/16 = +/-2^(-2) x 15 x 2^(-4) = +/-15 x 2^(-6) - Min subnormal number: S.000.0001 = +/-2^(-2) x 1/16 = +/-2^(-2) x 2^(-4) = +/-2^(-6) ``` Related PRs: - [PR-99698](https://github.com/llvm/llvm-project/pull/99698) [APFloat] Add support for f8E3M4 IEEE 754 type - [PR-97118](https://github.com/llvm/llvm-project/pull/97118) [MLIR] Add f8E4M3 IEEE 754 type
Welcome to the LLVM project!
This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.
C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Consult the Getting Started with LLVM page for information on building and running LLVM.
For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.
The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.