
CS255: Cryptography and Computer Security Winter 2016

Assignment #3
Due: Friday, Mar. 11, 2016, by Gradescope (each answer on a seperate page).

Problem 1. Let’s explore why in the RSA public key system each person has to be assigned
a different modulus N = pq. Suppose we try to use the same modulus N = pq for
everyone. Each person is assigned a public exponent ei and a private exponent di such
that ei · di = 1 mod ϕ(N). At first this appears to work fine: to encrypt to Bob, Alice
computes c = xebob for some value x and sends c to Bob. An eavesdropper Eve, not
knowing dbob appears to be unable to invert Bob’s RSA function to decrypt c. Let’s show
that using eeve and deve Eve can very easily decrypt c.

a. Show that given eeve and deve Eve can obtain a multiple of ϕ(N). Let us denote that
integer by V .

b. Suppose Eve intercepts a ciphertext c = xebob mod N . Show that Eve can use V to
efficiently obtain x from c. In other words, Eve can invert Bob’s RSA function.
Hint: First, suppose ebob is relatively prime to V . Then Eve can find an integer d
such that d · ebob = 1 mod V . Show that d can be used to efficiently compute x from c.
Next, show how to make your algorithm work even if ebob is not relatively prime to V .

Note: In fact, one can show that Eve can completely factor the global modulus N .

Problem 2. Time-space tradeoff. Let f : X → X be a one-way permutation. Show that one
can build a table T of size B bytes (B � |X|) that enables an attacker to invert f in time
O(|X|/B). More precisely, construct an O(|X|/B)-time deterministic algorithm A that
takes as input the table T and a y ∈ X, and outputs an x ∈ X satisfying f(x) = y. This
result suggests that the more memory the attacker has, the easier it becomes to invert
functions.
Hint: Pick a random point z ∈ X and compute the sequence

z0 := z, z1 := f(z), z2 := f(f(z)), z3 := f(f(f(z))), . . .

Since f is a permutation, this sequence must come back to z at some point (i.e. there
exists some j > 0 such that zj = z). We call the resulting sequence (z0, z1, . . . , zj) an
f -cycle. Let t := d|X|/Be. Try storing (z0, zt, z2t, z3t, . . .) in memory. Use this table (or
perhaps, several such tables) to invert an input y ∈ X in time O(t).

Problem 3. Commitment schemes. A commitment scheme enables Alice to commit a value
x to Bob. The scheme is secure if the commitment does not reveal to Bob any information
about the committed value x. At a later time Alice may open the commitment and
convince Bob that the committed value is x. The commitment is binding if Alice cannot

1

convince Bob that the committed value is some x′ 6= x. Here is an example commitment
scheme:

Public values: a group G of prime order q and two distinct generators g and h of G.

Commitment: To commit to an integer x ∈ [0, q − 1] Alice does the following: (1) she
picks a random r ∈ [0, q − 1], (2) she computes b = gx · hr, and (3) she sends b to
Bob as her commitment to x.

Open: To open the commitment Alice sends (x, r) to Bob. Bob verifies that
b = gx · hr.

Show that this scheme is secure and binding.

a. To prove security show that b does not reveal any information to Bob about x. In
other words, show that given b, the committed value can be any integer x′ in [0, q− 1].
Hint: show that for any x′ there exists a unique r′ ∈ [0, q − 1] so that b = gx

′
hr

′
.

b. To prove the binding property show that if Alice can open the commitment as (x′, r′)
where x 6= x′ then Alice can compute the discrete log of h base g. In other words, show
that if Alice can find an (x′, r′) such that b = gx

′
hr

′
then she can find the discrete log

of h base g. Recall that Alice also knows the (x, r) used to create b.

Problem 4. Let’s build a collision resistant hash function from the RSA problem. Let n be
a random RSA modulus, e a prime relatively prime to ϕ(n), and u random in Z∗n. Show
that the function

Hn,u,e : Z∗n × {0, . . . , e− 1} → Z∗n defined by Hn,u,e(x, y) := xeuy ∈ Zn

is collision resistant assuming that taking e’th roots modulo n is hard.

Suppose A is an algorithm that takes n, u as input and outputs a collision for Hn,u,e(·, ·).
Your goal is to construct an algorithm B for computing e’th roots modulo n.

a. Your algorithm B takes random n, u as input and should output u1/e. First, show how
to use A to construct a ∈ Zn and b ∈ Z such that ae = ub and 0 6= |b| < e.

b. Clearly a1/b is an e’th root of u (since (a1/b)e = u), but unfortunately for B, it cannot
compute roots in Zn. Nevertheless, show how B can compute a1/b. This will complete
your description of algorithm B and prove that a collision finder can be used to compute
e’th roots in Z∗n.
Hint: since e is prime and 0 6= |b| < e we know that b and e are relatively prime.
Hence, there are integers s, t so that bs+et = 1. Use a, u, s, t to find the e’th root of u.

c. Show that if we extend the domain of the function to Z∗n×{0, . . . , e} then the function
is no longer collision resistant.

2

Problem 5. Oblivious PRF. Let G be a cyclic group of prime order q generated by g ∈ G.
Let H :M→ G be a hash function. Let F be the PRF defined over (Zq,M,G) as follows:

F (k,m) := H(m)k for k ∈ Zq,m ∈M.

It is not difficult to show that this F is a secure PRF assuming the Decision Diffie-Hellman
(DDH) assumption holds in the group G and when the hash function H is modeled as a
random oracle.

Show that this PRF F can be evaluated obliviously. That is, show that if Bob has the
key k and Alice has an input m, there is a simple protocol that allows Alice to learn
F (k,m) without learning anything else about k. Moreover, Bob learns nothing about m.
You may assume that g and gk are publicly known values. An oblivious PRF like this is
quite handy for many applications.

a. To start the protocol, Alice generates a random r
R← Zq and sends to Bob u := H(m)·gr.

Show that this u is uniformly distributed in G and is independent of m, so that Bob
learns nothing about m.

b. Show how Bob can respond to enable Alice to learn F (k,m) and nothing else.

Problem 6. In this problem we explore a vulnerability in RSA-PKCS1 v1.5 signatures that
illustrates the fragility of the scheme. Let (N, 3) be an RSA public-key: N is the RSA
modulus and the signature verification exponent is 3. Recall that when signing a message
m using PKCS1 v1.5 one first forms the block

B = 01 0xFF . . . 0xFF 0x00 ASN1 hash

where hash = SHA256(m). The fields are:

• 01 is a two bytes (16 bits) field set to the value 01 (for PKCS1 mode 1),

• 0xFF . . . 0xFF is a variable length padding block where each byte is set to 0xFF (i.e.
the number 255),

• the 0x00 field is 1 byte (8 bits) set to 0 indicating the end of the padding block,

• The ASN1 field encodes the type of hash function used to hash the message. For
SHA256 this field holds a fixed 15 byte value.

• hash is the hash of the message m: for SHA256 this field is 32 bytes (256 bits).

The purpose of the variable length padding block is to ensure that B is about the size of
N . In our case B will be padded to 256 bytes (2048 bits). Note that the ASN1 field was
omitted in the lecture for simplicity.

When signing the message m the signer constructs B and then outputs (B1/3 mod N) as
the signature σ. Recall that the signer computes the cube root of B using his secret RSA
signing key.

To verify a message/signature pair (m,σ) using the public-key (N, 3) one would naively
carry out the following steps:

3

(a) set B ← σ3 mod N

(b) parse B from left to right and do:

i. if the top most 2 bytes are not 01 reject

ii. skip over all 0xFF bytes until reaching a 0x00 byte and skip over it too

iii. if the next 15 bytes are not the ASN1 identifier for SHA256 reject

iv. read the following 32 bytes (256 bits) and compare them to SHA256(m). Reject
if not equal.

(c) if all the checks above pass, accept the signature

While this procedure appears to correctly verify the signature it ignores one very crucial
step: it does not check that B contains nothing right of the hash. In particular, this
procedure will accept a 256 bytes (2048 bits) block B that looks as follows:

B∗ = 01 0xFF . . . 0xFF 0x00 ASN1 hash more bits J

where J is chosen arbitrarily by the attacker. Here the attacker shortened the variable
length block of 0xFF to make room for the value J so that the total length of B∗ is still
256 bytes (2048 bits).

Your goal is to show that this leads to a complete break of the signature scheme. In
particular, show that just given the public-key (N, 3), an attacker can forge the signature σ
on any message m of its choice.

Hint: To forge the signature on some message m, first compute SHA256(m) and then
construct the block B (without your appended J) so that the length of B is less than 1/3
the length of the modulus N . Say B is only 80 bytes (640 bits). To do so, simply make
the variable length padding block sufficiently short.

Next, your goal is to construct a 256-byte (2048 bits) integer B∗ such that:
(1) the first 80 bytes of B∗ are equal to B (the remaining bits of B∗ are arbitrary), and
(2) B∗ is a perfect cube (i.e. is the cube of some smaller integer).
Since B∗ is a perfect cube you can easily compute its real cube root σ. Then B∗ = σ3

holds over the integers and therefore the same also holds modulo N . Since the first 80
bytes of σ3 are equal to B the signature σ will be accepted as a valid signature on m.

Show how to construct the required 256-byte B∗: it must be a perfect cube and its top
80 bytes must be equal to B. Explain how to construct this B∗ and prove that your
construction produces a B∗ with the required properties.

History: This vulnerability was discovered by Daniel Bleichenbacher in 2006. In 2014 it
was discovered that all earlier versions of Mozilla’s crypto library, NSS, were vulnerable
to a variant of this attack.

4

