CS255: Cryptography and Computer Security

Winter 2018

Assignment #3

Due: Monday, Mar. 12, 2018, by Gradescope (each answer on a separate page).

- **Problem 1.** Let's explore why in the RSA public key system each person has to be assigned a different modulus n = pq. Suppose we try to use the same modulus n = pq for everyone. Each person is assigned a public exponent e_i and a private exponent d_i such that $e_i \cdot d_i =$ $1 \mod \varphi(n)$. At first this appears to work fine: to encrypt to Bob, Alice computes $c = x^{e_{\text{bob}}}$ for some value x and sends c to Bob. An eavesdropper Eve, not knowing d_{bob} appears to be unable to invert Bob's RSA function to decrypt c. Let's show that using e_{eve} and d_{eve} Eve can very easily decrypt c.
 - **a.** Show that given e_{eve} and d_{eve} Eve can obtain a multiple of $\varphi(n)$. Let us denote that integer by V.
 - **b.** Suppose Eve intercepts a ciphertext $c = x^{e_{bob}} \mod n$. Show that Eve can use V to efficiently obtain x from c. In other words, Eve can invert Bob's RSA function. **Hint:** First, suppose e_{bob} is relatively prime to V. Then Eve can find an integer d such that $d \cdot e_{bob} = 1 \mod V$. Show that d can be used to efficiently compute x from c. Next, show how to make your algorithm work even if e_{bob} is not relatively prime to V.

Note: In fact, one can show that Eve can completely factor the global modulus n.

Problem 2. Time-space tradeoff. Let $f : X \to X$ be a one-way one-to-one function. Show that one can build a table T of size 2B elements of X ($B \ll |X|$) that enables an attacker to invert f in time O(|X|/B). More precisely, construct an O(|X|/B)-time deterministic algorithm \mathcal{A} that takes as input the table T and a $y \in X$, and outputs an $x \in X$ satisfying f(x) = y. This result suggests that the more memory the attacker has, the easier it becomes to invert functions.

Hint: Pick a random point $z \in X$ and compute the sequence

$$z_0 := z, \ z_1 := f(z), \ z_2 := f(f(z)), \ z_3 := f(f(f(z))), \ \dots$$

Since f is a permutation, this sequence must come back to z at some point (i.e. there exists some j > 0 such that $z_j = z$). We call the resulting sequence (z_0, z_1, \ldots, z_j) an f-cycle. Let $t := \lceil |X|/B \rceil$. Try storing $(z_0, z_t, z_{2t}, z_{3t}, \ldots)$ in memory. Use this table (or perhaps, several such tables) to invert an input $y \in X$ in time O(t).

Problem 3. A commitment scheme enables Alice to commit a value x to Bob. The scheme is *hiding* if the commitment does not reveal to Bob any information about the committed value x. At a later time Alice may *open* the commitment and convince Bob that the committed value is x. The commitment is *binding* if Alice cannot convince Bob that the committed value is some $x' \neq x$. Here is an example commitment scheme:

Public values: A group \mathbb{G} of prime order q and two generators $g, h \in \mathbb{G}$.

Commitment: To commit to an integer $x \in \mathbb{Z}_q$ Alice does the following: (1) she chooses a random $r \in \mathbb{Z}_q$, (2) she computes $b = g^x \cdot h^r \in \mathbb{G}$, and (3) she sends b to Bob as her commitment to x.

Open: To open the commitment Alice sends (x, r) to Bob. Bob verifies that $b = g^x \cdot h^r$.

Show that this scheme is hiding and binding.

- **a.** To prove the hiding property show that b reveals no information about x. In other words, show that given b, the committed value can be any element x' in \mathbb{Z}_q . Hint: show that for any $x' \in \mathbb{Z}_q$ there exists a unique $r' \in \mathbb{Z}_q$ so that $b = g^{x'}h^{r'}$.
- **b.** To prove the binding property show that if Alice can open the commitment as (x', r'), where $x \neq x'$, then Alice can compute the discrete log of h base g. In other words, show that if Alice can find an (x', r') such that $b = g^{x'}h^{r'}$ and $x \neq x'$ then she can find the discrete log of h base g. Recall that Alice also knows the (x, r) used to create b.
- c. Show that the commitment is additively homomorphic: given a commitment to $x \in \mathbb{Z}_q$ and a commitment to $y \in \mathbb{Z}_q$, Bob can construct a commitment to z = ax + by, for any $a, b \in \mathbb{Z}_q$ of his choice.
- **Problem 4.** Fast one-time signatures from discrete-log. Let's see another application for the commitment scheme from the previous problem. Let \mathbb{G} be a group of prime order q with generator g. Consider the following signature system for signing messages in \mathbb{Z}_q :

KeyGen: choose $x, y \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_q$, set $h := g^x$ and $u := g^y$. output sk := (x, y) and $pk := (g, h, u) \in \mathbb{G}^3$. Sign(sk, $m \in \mathbb{Z}_q$): output $s \in \mathbb{Z}_q$ such that $u = g^m h^s$.

Verify(pk, m, s): output 'yes' if $u = g^m h^s$ and 'no' otherwise.

- **a.** Explain how the signing algorithm works. That is, show how to find s using sk. Note that signing is super fast.
- **b.** Show that the signature scheme is weakly one-time secure assuming the discrete-log problem in \mathbb{G} is hard. The weak one-time security game is defined as follows:

the adversary \mathcal{A} first outputs a message $m \in \mathbb{Z}_q$ and in response is given the public key pk and a valid signature s on m relative to pk. The adversary's goal is to output a signature forgery (m^*, s^*) where $m \neq m^*$.

Show how to use \mathcal{A} to compute discrete-log in \mathbb{G} . This will prove that the signature is secure in this weak sense as long as the adversary sees at most one signature.

[Recall that in the standard game defined in class the adversary is first given the public-key and only then outputs a message m. In the weak game above the adversary is forced to choose the message m before seeing the public-key. The standard game from class gives the adversary more power and more accurately models the real world.] **Hint:** Your goal is to construct an algorithm \mathcal{B} that given a random $h \in \mathbb{G}$ outputs an $x \in \mathbb{Z}_q$ such that $h = g^x$. Your algorithm \mathcal{B} runs adversary \mathcal{A} and receives a message m from \mathcal{A} . Show how \mathcal{B} can generate a public key pk = (g, h, u) so that it has a signature s for m. Your algorithm \mathcal{B} then sends pk and s to \mathcal{A} and receives from \mathcal{A} a signature forgery (m^*, s^*) . Show how to use the signatures on m^* and m to compute the discrete-log of h base g.

- c. Show that this signature scheme is not 2-time secure. Given the signature on two distinct messages $m_0, m_1 \in \mathbb{Z}_q$ show how to forge a signature for any other message $m \in \mathbb{Z}_q$.
- **Problem 5.** Oblivious PRF. Let \mathbb{G} be a cyclic group of prime order q generated by $g \in \mathbb{G}$. Let $H : \mathcal{M} \to \mathbb{G}$ be a hash function. Let F be the PRF defined over $(\mathbb{Z}_q, \mathcal{M}, \mathbb{G})$ as follows:

$$F(k,m) := H(m)^k \text{ for } k \in \mathbb{Z}_q, m \in \mathcal{M}.$$

It is not difficult to show that this F is a secure PRF assuming the Decision Diffie-Hellman (DDH) assumption holds in the group \mathbb{G} and, the hash function H is modeled as a random oracle.

Show that this PRF F can be evaluated *obliviously*. That is, show that if Bob has the key k and Alice has an input m, there is a simple protocol that allows Alice to learn F(k,m) without learning anything else about k. Moreover, Bob learns nothing about m. You may assume that g and g^k are publicly known values. An oblivious PRF like this is quite handy for many applications.

- **a.** To start the protocol, Alice generates a random $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$ and sends to Bob $u := H(m) \cdot g^r$. Show that this u is uniformly distributed in \mathbb{G} and is independent of m, so that Bob learns nothing about m.
- **b.** Show how Bob can respond to enable Alice to learn F(k, m) and nothing else.

- **Problem 6.** A bad choice of primes for RSA. Let's see why when choosing an RSA modulus n = pq it is important to choose the two primes p and q independently at random. Suppose n is generated by choosing the prime p at random, and then choosing the prime q dependent on p. In particular, suppose that p and q are close, namely $|p-q| < n^{1/4}$. Let's show that the resulting n can be easily factored.
 - **a.** Let A = (p+q)/2 be the arithmetic mean of p and q. Recall that \sqrt{n} is the geometric mean of p and q. Show that when $|p-q| < n^{1/4}$ we have that

$$A - \sqrt{n} < 1.$$

Hint: one way to prove this is by multiplying both sides by $A + \sqrt{n}$ and then using the fact that $A \ge \sqrt{n}$ by the AGM inequality.

- **b.** Because p and q are odd primes, we know that A is an integer. Then by part (a) we can deduce that $A = \lceil \sqrt{n} \rceil$, and therefore it is easy to calculate A from n. Show that using A and n it is easy to factor n.
- **Problem 7.** Consider again the RSA-FDH signature scheme. The public key is a pair (N, e)where N is an RSA modulus, and a signature on a message $m \in \mathcal{M}$ is defined as $\sigma := H(m)^{1/e} \in \mathbb{Z}_N$, where $H : \mathcal{M} \to \mathbb{Z}_N$ is a hash function. Suppose the adversary could find three messages $m_1, m_2, m_3 \in \mathcal{M}$ such that $H(m_1) \cdot H(m_2) = H(m_3)$ in \mathbb{Z}_N . Show that the resulting RSA-FDH signature scheme is no longer existentially unforgeable under a chosen message attack.

More generally, your attack shows that for security of the signature scheme, it should be difficult to find a set of inputs to H where the corresponding outputs have a known algebraic relation in \mathbb{Z}_N . One can show that this is indeed the case for a random function $H: \mathcal{M} \to \mathbb{Z}_N$, which is what we assumed when proving security of RSA-FDH.