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Running untrusted code
We often need to run buggy/unstrusted code:

– programs from untrusted Internet sites:

• mobile apps,   Javascript,   browser extensions   

– exposed applications:    browser,  pdf viewer,  outlook

– legacy daemons:   sendmail,  bind

– honeypots

Goal:    if application “misbehaves” ⇒ kill it



Dan Boneh

Approach:   confinement
Confinement:   ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
– Hardware:   run application on isolated hw (air gap)

air gap network 1Network 2

app 1 app 2

⇒ difficult to manage
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Approach:   confinement
Confinement:   ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
– Virtual machines:   isolate OS’s on a single machine  

Virtual Machine Monitor  (hypervisor)

OS1 OS2

app1 app2

Hardware
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Approach:   confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
– Process:     System Call Interposition  (containers)

Isolate a process in a single operating system

Operating System

process 2

process 1
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Approach:   confinement
Confinement:   ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

– Threads: Software Fault Isolation (SFI)

• Isolating threads sharing same address space  

– Application level confinement:  
e.g.  browser sandbox for Javascript and WebAssembly
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Implementing confinement
Key component:    reference monitor

– Mediates requests from applications
• Enforces confinement
• Implements a specified protection policy

– Must always be invoked:
• Every application request must be mediated

– Tamperproof:
• Reference monitor cannot be killed

… or if killed, then monitored process is killed too
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A old example:   chroot
To use do:   (must be root)

chroot   /tmp/guest root dir “/” is now “/tmp/guest”
su guest EUID set to “guest”

Now  “/tmp/guest” is added to every file system accesses:

fopen(“/etc/passwd”,   “r”)    ⇒
fopen(“/tmp/guest/etc/passwd” ,   “r”)

⇒ application (e.g., web server) cannot access files outside of jail
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Escaping from jails
Early escapes:    relative paths

fopen( “../../etc/passwd”,   “r”)   ⇒
fopen(“/tmp/guest/../../etc/passwd”,   “r”)

chroot should only be executable by root.
– otherwise jailed app can do:
• create dummy file   “/aaa/etc/passwd”
• run    chroot “/aaa”
• run    su root    to become root

(bug in Ultrix 4.0)
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Many ways to escape jail as root
• Create device that lets you access raw disk

• Send signals to non chrooted process

• Reboot system

• Bind to privileged ports
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Freebsd jail
Stronger mechanism than simple   chroot

To run:      jail    jail-path    hostname   IP-addr cmd

– calls hardened  chroot (no  “../../” escape)

– can only bind to sockets with specified IP address 
and authorized ports

– can only communicate with processes inside jail

– root is limited, e.g. cannot load kernel modules
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Problems with chroot and jail
Coarse policies:
– All or nothing access to parts of file system
– Inappropriate for apps like a web browser
• Needs read access to files outside jail 

(e.g., for sending attachments in Gmail)

Does not prevent malicious apps from:
– Accessing network and messing with other machines
– Trying to crash host OS
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Confinement

System Call Interposition:
sanboxing a process
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System call interposition
Observation:   to damage host system (e.g. persistent changes)  
app must make system calls:

– To delete/overwrite files: unlink, open, write
– To do network attacks: socket, bind, connect, send

Idea:    monitor app’s system calls and block unauthorized calls

Implementation options:
– Completely kernel space (e.g., Linux seccomp)
– Completely user space (e.g.,  program shepherding)
– Hybrid  (e.g.,  Systrace)
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Early implementation  (Janus)      [GWTB’96]

Linux ptrace:    process tracing
process calls:     ptrace (… ,  pid_t pid ,  …)
and wakes up when  pid makes sys call.

Monitor kills application if request is disallowed

OS Kernel

monitored
application
(browser)

monitor

user space

fopen(“/etc/passwd”,  “r”)
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Example policy
Sample policy file  (e.g., for PDF reader)

path allow  /tmp/*
path deny  /etc/passwd
network deny all

Manually specifying policy for an app can be difficult:

– Recommended default policies are available

…  can be made more restrictive as needed.
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Complications
• If app forks, monitor must also fork
– forked monitor monitors forked app

• If monitor crashes, app must be killed

• Monitor must maintain all OS state associated with app

– current-working-dir (CWD),    UID,   EUID,   GID

– When app does “cd path”monitor must update its CWD
• otherwise:   relative path requests interpreted incorrectly  

cd(“/tmp”)
open(“passwd”,  “r”)

cd(“/etc”)
open(“passwd”,  “r”)
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Problems with ptrace
Ptrace is not well suited for this application:
– Trace all system calls or none

inefficient:   no need to trace “close” system call 
– Monitor cannot abort sys-call without killing app

Security problems:   race conditions
– Example: symlink:    me  ⟶ mydata.dat

proc 1:   open(“me”)
monitor checks and authorizes
proc 2:   me  ⟶ /etc/passwd
OS executes    open(“me”) 

Classic TOCTOU bug:   time-of-check /  time-of-use

tim
e

not atomic
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SCI in Linux:  seccomp-bpf
Seccomp-BPF:  Linux kernel facility used to filter process sys calls
• Sys-call filter written in the BPF language   (use BPFC compiler)

• Used in Chromium, in Docker containers, …

OS Kernel

Chrome renderer 
process starts

Renderer process
renders site

user space

seccomp-bpf

due to exploit:
fopen(“/etc/passwd”,  “r”)

prctl(PR_SET_SECCOMP,  SECCOMP_MODE_FILTER,  
&bpf_policy)

…

run BPF program  …  kill process
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BPF filters  (policy programs)
Process can install multiple BPF filters:  
– once installed, filter cannot be removed  (all run on every syscall)

– if program forks, child inherits all filters
– if program calls execve, all filters are preserved

BPF filter input:   syscall number,   syscall args.,   arch. (x86 or ARM)

Filter returns one of: 
– SECCOMP_RET_KILL: kill process
– SECCOMP_RET_ERRNO: return specified error to caller
– SECCOMP_RET_ALLOW: allow syscall
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Installing a BPF filter

int main (int argc , char **argv )  {
prctl(PR_SET_NO_NEW_PRIVS , 1);
prctl(PR_SET_SECCOMP,   SECCOMP_MODE_FILTER,   &bpf_policy) 

fopen(“file.txt",  “w”);
printf(“… will not be printed. \n” );    

}

• Must be called before setting BPF filter.
• Ensures set-UID, set-GID ignored on subequent execve()

⇒ attacker cannot elevate privilege

Kill if call open() for write
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Docker: isolating containers using seccomp-bpf

Container:  process level isolation

• Container prevented from
making sys calls filtered by 
secomp-BPF

• Whoever starts container
can specify BPF policy
– default policy blocks many syscalls, including ptrace

hardware
host OS

Docker engine
App 1

App 2

App 3
containers
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Docker sys call filtering
Run nginx container with a specific filter called filter.json:

$  docker  run  --security-opt=“seccomp=filter.json”   nginx

Example filter:
“defaultAction”:  “SCMP_ACT_ERRNO”, //  deny by default
“syscalls”: [

{ "names":  ["accept”], //  sys-call name
"action":  "SCMP_ACT_ALLOW", //  allow (whitelist)
"args": [ ]  } , // what args to allow

…
]
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More Docker confinement flags
Specify as an unprivileged user:

$  docker  run  --user www    nginx

Limit Linux capabilities:
$  docker  run   --cap-drop all   --cap-add NET_BIND_SERVICE    nginx

Prevent process from becoming privileged  (e.g., by a setuid binary)
$  docker  run  --security-opt=no-new-privileges:true nginx

Limit number of restarts and resources:
$  docker  run  --restart=on-failure:<max-retries>

--ulimit nofile=<max-fd>    --ulimit nproc=<max-proc>  nginx

allow to bind to
privileged ports

drop all 
capabilities
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Confinement

Via Virtual Machines
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Virtual Machines

Virtual Machine Monitor (VMM, hypervisor)
Guest OS 2

Apps

Guest OS 1

Apps

Hardware
Host OS

VM2 VM1

single HW platform with isolated components
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Why so popular?
VMs in the 1960’s:
– Few computers,  lots of users
– VMs allow many users to shares a single computer

VMs  1970’s – 2000:    non-existent

VMs since 2000:
– Too many computers, too few users
• Print server,  Mail server,  Web server, File server,  Database , …

– VMs heavily used in private and public clouds
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Hypervisor security assumption
Hypervisor Security assumption:

– Malware can infect guest OS and guest apps

– But malware cannot escape from the infected VM
• Cannot infect host OS

• Cannot infect other VMs on the same hardware 

Requires that hypervisor protect itself and is not buggy

• (some) hypervisors are much simpler than a full OS 
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Problem:   covert channels
Covert channel:    unintended communication channel between 
isolated components
– Can leak classified data from secure component 

to public component

Classified VM Public VM

secret
doc

m
alw

are

listenercovert
channel

hypervisor
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An example covert channel
Both VMs use the same underlying hardware

To send a bit   b ∈ {0,1}   malware does:
– b= 1:   at  1:00am  do CPU intensive calculation

– b= 0:   at  1:00am  do nothing

At  1:00am listener does CPU intensive calc. and measures completion time

b = 1     ⇒ completion-time > threshold

Many covert channels exist in running system:
– File lock status,    cache contents,    interrupts,  …
– Difficult to eliminate all
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VM isolation in practice:  cloud  

Guest OS Guest OS

Hardware

Xen hypervisor

VM instance
customer 1

VM instance
customer 2

VMs from different customers may run on the same machine
• Hypervisor must isolate VMs  …  but some info leaks

Type 1 hypervisor:
no host OS
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VM isolation in practice:  end-user  
Qubes OS:  a desktop/laptop OS where everything is a VM
• Runs on top of the Xen hypervisor
• Access to peripherals (mic, camera, usb, …) controlled by VMs

Hardware

Xen hypervisor
Debian OS

Personal VM

Windows OS

Work VM

Debian OS

Disposable VM
sketchy PDF:



Dan Boneh

Debian OS

Personal VM

Debian OS

Whonix VM
Force all traffic through Tor

VM isolation in practice:  end-user  
Qubes OS:  a desktop/laptop OS where everything is a VM
• Runs on top of the Xen hypervisor
• Access to peripherals (mic, camera, usb, …) controlled by VMs

Hardware

Xen hypervisor
Windows OS

Work VM

Debian OS

Vault VM
Pwd/U2F Manager
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Every window frame identifies VM source

GUI VM ensures frames are drawn correctly
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Hypervisor detection
Can an OS detect it is running on top of a hypervisor?

Applications:

– Malware can detect hypervisor
• refuse to run to avoid reverse engineering

– Software that binds to hardware can refuse to run in VM

– DRM systems may refuse to run on top of hypervisor
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Hypervisor detection



Dan Boneh

Hypervisor detection    (red pill techniques)
• VM platforms often emulate simple hardware

– VMWare emulates an ancient i440bx chipset
… but report  8GB RAM,  dual CPUs, etc.

• Hypervisor introduces time latency variances
– Memory cache behavior differs in presence of hypervisor
– Results in relative time variations for any two operations

• Hypervisor shares the TLB with GuestOS
– GuestOS can detect reduced TLB size

• … and many more methods  [GAWF’07]
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Hypervisor detection in the browser  [HBBP’14]

Can we identify malware web sites?
• Approach:   crawl web,   

load pages in a browser running in a VM, 
look for pages that damage VM

• The problem:   Web page can detect it is running in a VM
How?   Using timing variations in writing to screen

• Malware in web page becomes benign when in a VM
⇒ evade detection
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Hypervisor detection
Bottom line:    The perfect hypervisor does not exist

Hypervisors today focus on:

Compatibility:   ensure off the shelf software works

Performance:    minimize virtualization overhead

• VMMs do not provide transparency

– Anomalies reveal existence of hypervisor 
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Confinement

Software Fault Isolation:
isolating threads
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Software Fault Isolation  [Whabe et al., 1993]

Goal:    confine apps running in same address space
– Kernel module should not corrupt kernel 
– Native libraries should not corrupt JVM

Simple solution:   runs apps in separate address spaces
– Problem:  slow if apps communicate frequently
• requires context switch per message
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Software Fault Isolation
SFI approach:   Partition process memory into segments

• Locate unsafe instructions:   jmp, load, store
– At compile time, add guards before unsafe instructions
– When loading code, ensure all guards are present

code
segment

data
segment

code
segment

data
segment

app #1 app #2
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Segment matching technique
• Designed for MIPS processor.   Many registers available.

• dr1,  dr2:   dedicated registers not used by binary
– compiler pretends these registers don’t exist
– dr2 contains segment ID

• Indirect load instruction       R12 ⟵ [R34]      becomes:

dr1 ⟵ R34
scratch-reg ⟵ (dr1 >> 20) : get segment ID
compare scratch-reg  and  dr2 : validate seg. ID
trap if not equal
R12 ⟵ [dr1] : do load

Guard ensures code does not 

load data from another segment
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Address sandboxing technique
• dr2:    holds segment ID

• Indirect load instruction     R12 ⟵ [R34]     becomes:

dr1 ⟵ R34  &  segment-mask : zero out seg bits
dr1 ⟵ dr1  |  dr2 : set valid seg ID
R12 ⟵ [dr1] : do load

• Fewer instructions than segment matching
… but does not catch offending instructions

• Similar guards placed on all unsafe instructions
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Problem:   what if    jmp [addr]    jumps directly into indirect load?

(bypassing guard)    

Solution:

This is why jmp instructions need a guard:
jmp guard ensures [addr] does not bypass load guard
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Cross domain calls
caller

domain
callee

domain

call draw call stub draw:

return

br addr
br addr
br addr

ret stub

• Only stubs allowed to make cross-domain jumps
• Jump table contains allowed exit points 

– Addresses are hard coded,   read-only segment

br addr
br addr
br addr
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SFI  Summary

• Performance
– Usually good:    mpeg_play,   4%  slowdown

• Limitations of SFI:   harder to implement on x86 :
– variable length instructions:  unclear where to put guards
– few registers:   can’t dedicate three to SFI
– many instructions affect memory:  more guards needed
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Confinement:   summary
• Many sandboxing techniques:

Physical air gap,   Virtual air gap (hypervisor),
System call interposition (SCI),  Software Fault isolation (SFI)
Application specific (e.g. Javascript in browser)

• Often complete isolation is inappropriate
– Apps need to communicate through regulated interfaces

• Hardest aspects of sandboxing:
– Specifying policy:    what can apps do and not do
– Preventing covert channels
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THE  END


