
Dan Boneh

Isolation

The confinement
principle

CS155: Computer Security

Dan Boneh

Running untrusted code
We often need to run buggy/unstrusted code:

– programs from untrusted Internet sites:

• mobile apps, Javascript, browser extensions

– exposed applications: browser, pdf viewer, outlook

– legacy daemons: sendmail, bind

– honeypots

Goal: if application “misbehaves” ⇒ kill it

Dan Boneh

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
– Hardware: run application on isolated hw (air gap)

air gap network 1Network 2

app 1 app 2

⇒ difficult to manage

Dan Boneh

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
– Virtual machines: isolate OS’s on a single machine

Virtual Machine Monitor (hypervisor)

OS1 OS2

app1 app2

Hardware

Dan Boneh

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
– Process: System Call Interposition (containers)

Isolate a process in a single operating system

Operating System

process 2

process 1

Dan Boneh

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

– Threads: Software Fault Isolation (SFI)

• Isolating threads sharing same address space

– Application level confinement:
e.g. browser sandbox for Javascript and WebAssembly

Dan Boneh

Implementing confinement
Key component: reference monitor

– Mediates requests from applications
• Enforces confinement
• Implements a specified protection policy

– Must always be invoked:
• Every application request must be mediated

– Tamperproof:
• Reference monitor cannot be killed

… or if killed, then monitored process is killed too

Dan Boneh

A old example: chroot
To use do: (must be root)

chroot /tmp/guest root dir “/” is now “/tmp/guest”
su guest EUID set to “guest”

Now “/tmp/guest” is added to every file system accesses:

fopen(“/etc/passwd”, “r”) ⇒
fopen(“/tmp/guest/etc/passwd” , “r”)

⇒ application (e.g., web server) cannot access files outside of jail

Dan Boneh

Escaping from jails
Early escapes: relative paths

fopen(“../../etc/passwd”, “r”) ⇒
fopen(“/tmp/guest/../../etc/passwd”, “r”)

chroot should only be executable by root.
– otherwise jailed app can do:
• create dummy file “/aaa/etc/passwd”
• run chroot “/aaa”
• run su root to become root

(bug in Ultrix 4.0)

Dan Boneh

Many ways to escape jail as root
• Create device that lets you access raw disk

• Send signals to non chrooted process

• Reboot system

• Bind to privileged ports

Dan Boneh

Freebsd jail
Stronger mechanism than simple chroot

To run: jail jail-path hostname IP-addr cmd

– calls hardened chroot (no “../../” escape)

– can only bind to sockets with specified IP address
and authorized ports

– can only communicate with processes inside jail

– root is limited, e.g. cannot load kernel modules

Dan Boneh

Problems with chroot and jail
Coarse policies:
– All or nothing access to parts of file system
– Inappropriate for apps like a web browser
• Needs read access to files outside jail

(e.g., for sending attachments in Gmail)

Does not prevent malicious apps from:
– Accessing network and messing with other machines
– Trying to crash host OS

Dan Boneh

Confinement

System Call Interposition:
sanboxing a process

Dan Boneh

System call interposition
Observation: to damage host system (e.g. persistent changes)
app must make system calls:

– To delete/overwrite files: unlink, open, write
– To do network attacks: socket, bind, connect, send

Idea: monitor app’s system calls and block unauthorized calls

Implementation options:
– Completely kernel space (e.g., Linux seccomp)
– Completely user space (e.g., program shepherding)
– Hybrid (e.g., Systrace)

Dan Boneh

Early implementation (Janus) [GWTB’96]

Linux ptrace: process tracing
process calls: ptrace (… , pid_t pid , …)
and wakes up when pid makes sys call.

Monitor kills application if request is disallowed

OS Kernel

monitored
application
(browser)

monitor

user space

fopen(“/etc/passwd”, “r”)

Dan Boneh

Example policy
Sample policy file (e.g., for PDF reader)

path allow /tmp/*
path deny /etc/passwd
network deny all

Manually specifying policy for an app can be difficult:

– Recommended default policies are available

… can be made more restrictive as needed.

Dan Boneh

Complications
• If app forks, monitor must also fork
– forked monitor monitors forked app

• If monitor crashes, app must be killed

• Monitor must maintain all OS state associated with app

– current-working-dir (CWD), UID, EUID, GID

– When app does “cd path”monitor must update its CWD
• otherwise: relative path requests interpreted incorrectly

cd(“/tmp”)
open(“passwd”, “r”)

cd(“/etc”)
open(“passwd”, “r”)

Dan Boneh

Problems with ptrace
Ptrace is not well suited for this application:
– Trace all system calls or none

inefficient: no need to trace “close” system call
– Monitor cannot abort sys-call without killing app

Security problems: race conditions
– Example: symlink: me ⟶ mydata.dat

proc 1: open(“me”)
monitor checks and authorizes
proc 2: me ⟶ /etc/passwd
OS executes open(“me”)

Classic TOCTOU bug: time-of-check / time-of-use

tim
e

not atomic

Dan Boneh

SCI in Linux: seccomp-bpf
Seccomp-BPF: Linux kernel facility used to filter process sys calls
• Sys-call filter written in the BPF language (use BPFC compiler)

• Used in Chromium, in Docker containers, …

OS Kernel

Chrome renderer
process starts

Renderer process
renders site

user space

seccomp-bpf

due to exploit:
fopen(“/etc/passwd”, “r”)

prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,
&bpf_policy)

…

run BPF program … kill process

Dan Boneh

BPF filters (policy programs)
Process can install multiple BPF filters:
– once installed, filter cannot be removed (all run on every syscall)

– if program forks, child inherits all filters
– if program calls execve, all filters are preserved

BPF filter input: syscall number, syscall args., arch. (x86 or ARM)

Filter returns one of:
– SECCOMP_RET_KILL: kill process
– SECCOMP_RET_ERRNO: return specified error to caller
– SECCOMP_RET_ALLOW: allow syscall

Dan Boneh

Installing a BPF filter

int main (int argc , char **argv) {
prctl(PR_SET_NO_NEW_PRIVS , 1);
prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bpf_policy)

fopen(“file.txt", “w”);
printf(“… will not be printed. \n”);

}

• Must be called before setting BPF filter.
• Ensures set-UID, set-GID ignored on subequent execve()

⇒ attacker cannot elevate privilege

Kill if call open() for write

Dan Boneh

Docker: isolating containers using seccomp-bpf

Container: process level isolation

• Container prevented from
making sys calls filtered by
secomp-BPF

• Whoever starts container
can specify BPF policy
– default policy blocks many syscalls, including ptrace

hardware
host OS

Docker engine
App 1

App 2

App 3
containers

Dan Boneh

Docker sys call filtering
Run nginx container with a specific filter called filter.json:

$ docker run --security-opt=“seccomp=filter.json” nginx

Example filter:
“defaultAction”: “SCMP_ACT_ERRNO”, // deny by default
“syscalls”: [

{ "names": ["accept”], // sys-call name
"action": "SCMP_ACT_ALLOW", // allow (whitelist)
"args": [] } , // what args to allow

…
]

Dan Boneh

More Docker confinement flags
Specify as an unprivileged user:

$ docker run --user www nginx

Limit Linux capabilities:
$ docker run --cap-drop all --cap-add NET_BIND_SERVICE nginx

Prevent process from becoming privileged (e.g., by a setuid binary)
$ docker run --security-opt=no-new-privileges:true nginx

Limit number of restarts and resources:
$ docker run --restart=on-failure:<max-retries>

--ulimit nofile=<max-fd> --ulimit nproc=<max-proc> nginx

allow to bind to
privileged ports

drop all
capabilities

Dan Boneh

Confinement

Via Virtual Machines

Dan Boneh

Virtual Machines

Virtual Machine Monitor (VMM, hypervisor)
Guest OS 2

Apps

Guest OS 1

Apps

Hardware
Host OS

VM2 VM1

single HW platform with isolated components

Dan Boneh

Why so popular?
VMs in the 1960’s:
– Few computers, lots of users
– VMs allow many users to shares a single computer

VMs 1970’s – 2000: non-existent

VMs since 2000:
– Too many computers, too few users
• Print server, Mail server, Web server, File server, Database , …

– VMs heavily used in private and public clouds

Dan Boneh

Hypervisor security assumption
Hypervisor Security assumption:

– Malware can infect guest OS and guest apps

– But malware cannot escape from the infected VM
• Cannot infect host OS

• Cannot infect other VMs on the same hardware

Requires that hypervisor protect itself and is not buggy

• (some) hypervisors are much simpler than a full OS

Dan Boneh

Problem: covert channels
Covert channel: unintended communication channel between
isolated components
– Can leak classified data from secure component

to public component

Classified VM Public VM

secret
doc

m
alw

are

listenercovert
channel

hypervisor

Dan Boneh

An example covert channel
Both VMs use the same underlying hardware

To send a bit b ∈ {0,1} malware does:
– b= 1: at 1:00am do CPU intensive calculation

– b= 0: at 1:00am do nothing

At 1:00am listener does CPU intensive calc. and measures completion time

b = 1 ⇒ completion-time > threshold

Many covert channels exist in running system:
– File lock status, cache contents, interrupts, …
– Difficult to eliminate all

Dan Boneh

VM isolation in practice: cloud

Guest OS Guest OS

Hardware

Xen hypervisor

VM instance
customer 1

VM instance
customer 2

VMs from different customers may run on the same machine
• Hypervisor must isolate VMs … but some info leaks

Type 1 hypervisor:
no host OS

Dan Boneh

VM isolation in practice: end-user
Qubes OS: a desktop/laptop OS where everything is a VM
• Runs on top of the Xen hypervisor
• Access to peripherals (mic, camera, usb, …) controlled by VMs

Hardware

Xen hypervisor
Debian OS

Personal VM

Windows OS

Work VM

Debian OS

Disposable VM
sketchy PDF:

Dan Boneh

Debian OS

Personal VM

Debian OS

Whonix VM
Force all traffic through Tor

VM isolation in practice: end-user
Qubes OS: a desktop/laptop OS where everything is a VM
• Runs on top of the Xen hypervisor
• Access to peripherals (mic, camera, usb, …) controlled by VMs

Hardware

Xen hypervisor
Windows OS

Work VM

Debian OS

Vault VM
Pwd/U2F Manager

Dan Boneh

Every window frame identifies VM source

GUI VM ensures frames are drawn correctly

Dan Boneh

Hypervisor detection
Can an OS detect it is running on top of a hypervisor?

Applications:

– Malware can detect hypervisor
• refuse to run to avoid reverse engineering

– Software that binds to hardware can refuse to run in VM

– DRM systems may refuse to run on top of hypervisor

Dan Boneh

Hypervisor detection

Dan Boneh

Hypervisor detection (red pill techniques)
• VM platforms often emulate simple hardware

– VMWare emulates an ancient i440bx chipset
… but report 8GB RAM, dual CPUs, etc.

• Hypervisor introduces time latency variances
– Memory cache behavior differs in presence of hypervisor
– Results in relative time variations for any two operations

• Hypervisor shares the TLB with GuestOS
– GuestOS can detect reduced TLB size

• … and many more methods [GAWF’07]

Dan Boneh

Hypervisor detection in the browser [HBBP’14]

Can we identify malware web sites?
• Approach: crawl web,

load pages in a browser running in a VM,
look for pages that damage VM

• The problem: Web page can detect it is running in a VM
How? Using timing variations in writing to screen

• Malware in web page becomes benign when in a VM
⇒ evade detection

Dan Boneh

Hypervisor detection
Bottom line: The perfect hypervisor does not exist

Hypervisors today focus on:

Compatibility: ensure off the shelf software works

Performance: minimize virtualization overhead

• VMMs do not provide transparency

– Anomalies reveal existence of hypervisor

Dan Boneh

Confinement

Software Fault Isolation:
isolating threads

Dan Boneh

Software Fault Isolation [Whabe et al., 1993]

Goal: confine apps running in same address space
– Kernel module should not corrupt kernel
– Native libraries should not corrupt JVM

Simple solution: runs apps in separate address spaces
– Problem: slow if apps communicate frequently
• requires context switch per message

Dan Boneh

Software Fault Isolation
SFI approach: Partition process memory into segments

• Locate unsafe instructions: jmp, load, store
– At compile time, add guards before unsafe instructions
– When loading code, ensure all guards are present

code
segment

data
segment

code
segment

data
segment

app #1 app #2

Dan Boneh

Segment matching technique
• Designed for MIPS processor. Many registers available.

• dr1, dr2: dedicated registers not used by binary
– compiler pretends these registers don’t exist
– dr2 contains segment ID

• Indirect load instruction R12 ⟵ [R34] becomes:

dr1 ⟵ R34
scratch-reg ⟵ (dr1 >> 20) : get segment ID
compare scratch-reg and dr2 : validate seg. ID
trap if not equal
R12 ⟵ [dr1] : do load

Guard ensures code does not

load data from another segment

Dan Boneh

Address sandboxing technique
• dr2: holds segment ID

• Indirect load instruction R12 ⟵ [R34] becomes:

dr1 ⟵ R34 & segment-mask : zero out seg bits
dr1 ⟵ dr1 | dr2 : set valid seg ID
R12 ⟵ [dr1] : do load

• Fewer instructions than segment matching
… but does not catch offending instructions

• Similar guards placed on all unsafe instructions

Dan Boneh

Problem: what if jmp [addr] jumps directly into indirect load?

(bypassing guard)

Solution:

This is why jmp instructions need a guard:
jmp guard ensures [addr] does not bypass load guard

Dan Boneh

Cross domain calls
caller

domain
callee

domain

call draw call stub draw:

return

br addr
br addr
br addr

ret stub

• Only stubs allowed to make cross-domain jumps
• Jump table contains allowed exit points

– Addresses are hard coded, read-only segment

br addr
br addr
br addr

Dan Boneh

SFI Summary

• Performance
– Usually good: mpeg_play, 4% slowdown

• Limitations of SFI: harder to implement on x86 :
– variable length instructions: unclear where to put guards
– few registers: can’t dedicate three to SFI
– many instructions affect memory: more guards needed

Dan Boneh

Confinement: summary
• Many sandboxing techniques:

Physical air gap, Virtual air gap (hypervisor),
System call interposition (SCI), Software Fault isolation (SFI)
Application specific (e.g. Javascript in browser)

• Often complete isolation is inappropriate
– Apps need to communicate through regulated interfaces

• Hardest aspects of sandboxing:
– Specifying policy: what can apps do and not do
– Preventing covert channels

Dan Boneh

THE END

