@@ -271,77 +271,83 @@ def _values_for_factorize(self) -> Tuple[np.ndarray, int]:
271
271
# ------------------------------------------------------------------------
272
272
# Reductions
273
273
274
- def any (self , axis = None , out = None , keepdims = False , skipna = True ):
274
+ def any (self , * , axis = None , out = None , keepdims = False , skipna = True ):
275
275
nv .validate_any ((), dict (out = out , keepdims = keepdims ))
276
276
return nanops .nanany (self ._ndarray , axis = axis , skipna = skipna )
277
277
278
- def all (self , axis = None , out = None , keepdims = False , skipna = True ):
278
+ def all (self , * , axis = None , out = None , keepdims = False , skipna = True ):
279
279
nv .validate_all ((), dict (out = out , keepdims = keepdims ))
280
280
return nanops .nanall (self ._ndarray , axis = axis , skipna = skipna )
281
281
282
- def min (self , skipna : bool = True , ** kwargs ) -> Scalar :
282
+ def min (self , * , skipna : bool = True , ** kwargs ) -> Scalar :
283
283
nv .validate_min ((), kwargs )
284
284
result = masked_reductions .min (
285
285
values = self .to_numpy (), mask = self .isna (), skipna = skipna
286
286
)
287
287
return result
288
288
289
- def max (self , skipna : bool = True , ** kwargs ) -> Scalar :
289
+ def max (self , * , skipna : bool = True , ** kwargs ) -> Scalar :
290
290
nv .validate_max ((), kwargs )
291
291
result = masked_reductions .max (
292
292
values = self .to_numpy (), mask = self .isna (), skipna = skipna
293
293
)
294
294
return result
295
295
296
- def sum (self , axis = None , skipna = True , min_count = 0 , ** kwargs ) -> Scalar :
296
+ def sum (self , * , axis = None , skipna = True , min_count = 0 , ** kwargs ) -> Scalar :
297
297
nv .validate_sum ((), kwargs )
298
298
return nanops .nansum (
299
299
self ._ndarray , axis = axis , skipna = skipna , min_count = min_count
300
300
)
301
301
302
- def prod (self , axis = None , skipna = True , min_count = 0 , ** kwargs ) -> Scalar :
302
+ def prod (self , * , axis = None , skipna = True , min_count = 0 , ** kwargs ) -> Scalar :
303
303
nv .validate_prod ((), kwargs )
304
304
return nanops .nanprod (
305
305
self ._ndarray , axis = axis , skipna = skipna , min_count = min_count
306
306
)
307
307
308
- def mean (self , axis = None , dtype = None , out = None , keepdims = False , skipna = True ):
308
+ def mean (self , * , axis = None , dtype = None , out = None , keepdims = False , skipna = True ):
309
309
nv .validate_mean ((), dict (dtype = dtype , out = out , keepdims = keepdims ))
310
310
return nanops .nanmean (self ._ndarray , axis = axis , skipna = skipna )
311
311
312
312
def median (
313
- self , axis = None , out = None , overwrite_input = False , keepdims = False , skipna = True
313
+ self , * , axis = None , out = None , overwrite_input = False , keepdims = False , skipna = True
314
314
):
315
315
nv .validate_median (
316
316
(), dict (out = out , overwrite_input = overwrite_input , keepdims = keepdims )
317
317
)
318
318
return nanops .nanmedian (self ._ndarray , axis = axis , skipna = skipna )
319
319
320
- def std (self , axis = None , dtype = None , out = None , ddof = 1 , keepdims = False , skipna = True ):
320
+ def std (
321
+ self , * , axis = None , dtype = None , out = None , ddof = 1 , keepdims = False , skipna = True
322
+ ):
321
323
nv .validate_stat_ddof_func (
322
324
(), dict (dtype = dtype , out = out , keepdims = keepdims ), fname = "std"
323
325
)
324
326
return nanops .nanstd (self ._ndarray , axis = axis , skipna = skipna , ddof = ddof )
325
327
326
- def var (self , axis = None , dtype = None , out = None , ddof = 1 , keepdims = False , skipna = True ):
328
+ def var (
329
+ self , * , axis = None , dtype = None , out = None , ddof = 1 , keepdims = False , skipna = True
330
+ ):
327
331
nv .validate_stat_ddof_func (
328
332
(), dict (dtype = dtype , out = out , keepdims = keepdims ), fname = "var"
329
333
)
330
334
return nanops .nanvar (self ._ndarray , axis = axis , skipna = skipna , ddof = ddof )
331
335
332
- def sem (self , axis = None , dtype = None , out = None , ddof = 1 , keepdims = False , skipna = True ):
336
+ def sem (
337
+ self , * , axis = None , dtype = None , out = None , ddof = 1 , keepdims = False , skipna = True
338
+ ):
333
339
nv .validate_stat_ddof_func (
334
340
(), dict (dtype = dtype , out = out , keepdims = keepdims ), fname = "sem"
335
341
)
336
342
return nanops .nansem (self ._ndarray , axis = axis , skipna = skipna , ddof = ddof )
337
343
338
- def kurt (self , axis = None , dtype = None , out = None , keepdims = False , skipna = True ):
344
+ def kurt (self , * , axis = None , dtype = None , out = None , keepdims = False , skipna = True ):
339
345
nv .validate_stat_ddof_func (
340
346
(), dict (dtype = dtype , out = out , keepdims = keepdims ), fname = "kurt"
341
347
)
342
348
return nanops .nankurt (self ._ndarray , axis = axis , skipna = skipna )
343
349
344
- def skew (self , axis = None , dtype = None , out = None , keepdims = False , skipna = True ):
350
+ def skew (self , * , axis = None , dtype = None , out = None , keepdims = False , skipna = True ):
345
351
nv .validate_stat_ddof_func (
346
352
(), dict (dtype = dtype , out = out , keepdims = keepdims ), fname = "skew"
347
353
)
0 commit comments