.diff(axis=1)
gives NaNs
with different types.
#21437
Labels
Dtype Conversions
Unexpected or buggy dtype conversions
Multi-Block
Issues caused by the presence of multiple Blocks
Numeric Operations
Arithmetic, Comparison, and Logical operations
Problem description
When diffing across the column axis with different numeric types in the columns we get
Not sure if this is intentional behaviour but given that
df.a - df.b
works as expected, I would think that.diff
does the same. I think it should at least emit a warning when the types differ.Expected Output
Output of
pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.6.2.final.0
python-bits: 64
OS: Linux
OS-release: 3.10.0-327.el7.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8
LOCALE: en_GB.UTF-8
pandas: 0.20.3
pytest: 3.2.1
pip: 9.0.1
setuptools: 36.4.0
Cython: None
numpy: 1.13.1
scipy: 0.19.1
xarray: None
IPython: 6.1.0
sphinx: None
patsy: 0.4.1
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: None
tables: 3.4.2
numexpr: 2.6.2
feather: None
matplotlib: 2.0.2
openpyxl: 2.4.8
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 0.9999999
sqlalchemy: 1.1.13
pymysql: 0.7.9.None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: None
The text was updated successfully, but these errors were encountered: