CS251 Fall 2020
(cs251.stanford.edu)

Scaling I:

Payment Channels, State Channels

Benedikt Blinz

Bitcoin Throughput

Transaction Rate

3.56 tps

2016-07-11 blockchain.com/charts 2020-10-12

Block Size

Average Block Size

1.23 MB

1 MB per Block
250 byte

4000 tx/block
Max: 6.7 tx/s

2017-10-14 blockchain.com/charts 2020-10-11

Ethereum Throughput

Transactions per second

TX: 21k Gas
® e Llhlx 12.5M Gas per

block
n
| 600tx/block
% BLOG KICHAI fﬁl 1 Block/15s
u | Max 40tx/s

sl sl B |
VI SA MaSt@ AN

Visa ~2000tx/s
Up to 65000tx/s (Christmas shopping season)

Raising Blocksize/Gas limit

TX/s directly dependent on blocksize.

Why not raise it?
Network delay/Consensus security is dependent on block size

Additional issue: Latency (delay till TX confirmation)

Idea: Increase #tx without increasing data

* What if we don’t record every TX on the chain.

* Only record settlements

* Use Blockchain to solve disputes

* Potential to scale transactions especially if
everything goes well

* Get Blockchain security if things go bad

Blockchain Ledger

Recap UTXO vs Account

UTXOs +SCRIPTs Accounts +Smart Contracts
(Bitcoin) (Ethereum)

@ I explore products v

Pay bills Chase QuickPay Transfer money Payment activity eoe

~BANK ACCOUNTS Balance

TOTAL CHECKING (1664 TOTAL CHECKING (1664 Things you can do v

$5,489.04 Availal ance @ Pr salance @ Overdraft pr o Debit card co
Aalable balance | $5,489,04 $5,489.04 on on
See detals > See detalls >
CHASE SAVINGS (..5662)
Statements Paperless settings
$7,215.35
Autabie baance
ot c127809 sHowine: | Al transactions v Qg L
Date Descrption Amount Balance
- CREDIT CARDS
Pending Card Payment $135.44
CREDIT CARD (..6389) Bill payment
freédom
$51 467 naoame remore onineDeposk | 3 s3517.69
CREDIT CARD (..0017)
Jan 19,2016 Trattoria Marco -$35.00 $1,971.35
Value 0.05000000 BTC e
Pkscript OP_DUP State State'
OP_HASH160 Tacsne G
1024 eth Transaction
45b21c8a0cb687d563342b6¢729d31dab58e3ade oo752980 = rom
OP_EQUALVERIFY T e :b:v“
OP_CHECKSIG [0.235235, 0. liCE —|
o o oota o
Sigscript 304402205846cace0d73de82dfbdebasdd65b9856d7¢1b1730eb401cf4906b2401a69b Chanue)
dc90220589d36d36be64e774c8796b96c011f29768191abeb7f56ba20ffb0351280860 d " pasardedns . '
03557¢228b080703d52d72ead1bd93fc72f45c4ddbac2b7a20c458e2d069c8dd9e 71eth

Payment Channels
T TC
TX2; BTC
TXSL9. TC

Settlement Tx: 0.03BTC

\‘m

" W

Unidirectional Payment Channel

;.Iﬂl; Bob does not publish

Publish TX3 on Blockchain

8

@ TX1: 0.99 to Alice/0.01 to Bob from UTXO A
AlLce
TX2:0.98 to Alice/0.02 to Bob from UTXO A

Allce
TX3:0.97 to Alice/0.03 to Bob from UTXO A

AlLee

Unidirectional Payment Channel

i

Bob does not publish

Publish TX3 on Blockchain

TX1: 0.99 to Alice/0.01 to Bob from UTXO A
AlLce
TX2:0.98 to Alice/0.02 to Bob from UTXO A

Allce
TX3:0.97 to Alice/0.03 to Bob from UTXO A

AlLee

Unidirectional Payment Channel

Publish TX3 on Blockchain
Bob never sig @

TX1: 0.99 to Alice/0.01 to Bob from AB
AlLce
TX2:0.98 to Alice/0.02 to Bob from AB

Allce
TX3:0.97 to Alice/0.03 to Bob from AB

AlLee

Unidirectional Payment Channel

* Alice needs a way to ensure refund of funds

e Basic idea: If Bob doesn’t publish after some time Alice
gets 1 BTC refunded

* Refund transaction signed before funding Account AB
* In UTXO implemented with timelocks

* In Ethereum implemented as smart contract

* Non expiring: Refund TX starts claim period for Bob

* Once Alice sent 1 BTC to Bob Channel is “exhausted”

Payment Channel in Solidity

Home UniChannel.sol

pragma solidity >=0.4.24 <0.6.0;

contract SimplePaymentChannel @
address payable public sender; // The account sending payments.
address payable public recipient; // The account receiving the payments.
uint256 public expiration; // Timeout in case the recipient never closes.

constructor (address payable _recipient, uint256 duration)
public
payable

sender = msg.sender;
recipient = _recipient;
expiration = now + duration;

/// the recipient can close the channel at any time by presenting a
/// signed amount from the sender. the recipient will be sent that amount,
/// and the remainder will go back to the sender
function close(uint256 amount, bytes memory signature) public {
require(msg.sender == recipient);
require(isValidSignatureCamount, signature));

recipient.transfer(amount);
selfdestruct(sender);
}

/// if the timeout is reached without the recipient closing the channel,
/// then the Ether is released back to the sender.
function claimTimeout() public {

require(now >= expiration);

selfdestruct(sender);

Bidirectional Payment Channel

Alice and Bob want to move funds back and forth

L 8

Two Unidirectional Channels?

Not as useful, Channels get exhausted

Bidirectional Payment Channel

A: 0.6, Bob: 0.4 Nonce 1
AlLee Bob

Bidirectional Payment Channel

Alice and Bob want to move funds back and forth

A: 0.3, Bob: 0.7 Nonce 2
AlLee Bob

Closing Payment Channel

Before funding Alice and Bob get sign initial state

Alice submits balances and signatures to contract.

-> Starts challenge period

If Bob can submit tx with greater nonce: New state is valid.
Instant closing?

State Channels

Smart contract that implements a game between
Alice and Bob
Game has a state

State Channels

Can be used to
move arbitrary 2
party contracts off
chain

Payment Chanels with UTXOs

Problem: No state -> Can’t store nonce

Solution:
When updating the channel to Alices benefit,
Alice gets TX that invalidates Bob’s old state

UTXO payment channel concepts

e Relative time-lock: output can be claimed t timesteps (i.e.,
blocks) from the time the TX is accepted to the blockchain

* Hash lock: Claiming output is pre-conditioned on providing
the preimage of a cryptographic hash

Intuition: Both A and B hold TXs they can submit to settle the current
split balance. Balance is updated by exchanging new TXs and
“‘invalidating” old. Unilateral settlement is time-locked for one party,
allows the other to challenge by providing hash-lock preimage. TXs
invalidated by exchanging hash-lock preimages.

22

UTXO Payment Channel

8

Random x Randomy
TX1 from C: TX2 from C:
Outl: Pay 7 -> A Pay3->B
Out2: Either 3 -> B (7 Day timelock) || Either 7 -> A (7 Day timelock)
Or 3 ->Avys.t. H(y)=Y Or 7 -> B given x s.t. H(x)=X
Alice Bob

UTXO Payment Channel Update

@ X'=H(x’)

Random x’

TX3 from C:
Outl: Pay 6 -> A
Out2: Either 4 -> B (7 Day timelock)

Or 4 ->Avys.t. H(y)=Y
Alice

TX4 from C:

Pay4 ->B

Either 6 -> A (7 Day timelock)
Or 6 -> B given x s.t. H(x)=X’
Bob

Alice has TX2,TX4

Bob has TX1,TX3, x

TX2 from C:

Pay3->B

Either 7 -> A (7 Day timelock)
Or 7 -> B given x s.t. H(x)=X

TX1 from C:

Pay 7 -> A

Either 3 -> B (7 Day timelock)
Or 3->Avys.t. H(y)=Y

Either 6 -> A (7 Day timelock)
Or 6 -> B given x’ s.t. H(x")=X’
Bob

Bob AlLee
TX4 from C: TX3 from C:
Pay 4 ->B Pay 6 -> A

Either 4 -> B (7 Day timelock)
Or 4 ->Avys.t. H(y)=Y
Alice

UTXO Payment Channel Update

TX5 from C:

Pay 8 -> A

Either 2 -> B (7 Day timelock)
Or 2 ->Avys.t H(y')=Y

Altce

y
V'=H(Y) @

Random y’

TX6 from C:

Pay 2 ->B

Either 8 -> A (7 Day timelock)
Or 8 -> B given x s.t. H(x)=X’
Bob

Alice has TX2,TX6, y Bob has TX3,TX5, x

TX2 from C: TX3 from C:

Pay3->B Pay 6 -> A

Either 7 -> A (7 Day timelock) Either 4 -> B (7 Day timelock)
Or 7 -> B given x s.t. H(x)=X Or 4 ->Avys.t. H(y)=Y

Bob Alice

TX6 from C: TX5 from C:

Pay2->B Pay 8 -> A

Either 8 -> A (7 Day timelock) Either 2 -> B (7 Day timelock)
Or 8 -> B given x s.t. H(x")=X’ Or 2->Avys.t H(y')=Y’

Bob Alice

Multi-hop payments

L

8 A

Pay through untrusted intermediary

Multi-hop payments

L

8

R=H(r)

Pay 1.01 BTCto B
Hashlocked with R

Timelock to refund

Pay 1 BTCto C

Hashlocked with R Random r
Timelock to refund

B claims 1.01 BTC with r

Cclaims 1 BTC with r

Lightning network

Many extensions possible:
Multi currency hubs
Credit hubs

Lightning requires
nodes to be
periodically online to
check for claim TX

Watchtowers
outsource this task

Trusted for availability
not custodian of funds
Risk of bribing

User gives latest
state to watchtower.

END OF LECTURE

Next lecture:

Scaling Il: Accumulators and Rollup

