What are OLAP Databases?

OLAP (Online Analytical Processing) databases are designed to support complex queries and data analysis, typically for business intelligence and decision-making purposes. They enable users to interactively explore large volumes of multidimensional data, offering fast retrieval of insights across various dimensions such as time, geography, and product categories. OLAP databases use specialized structures like cubes to allow for rapid aggregation and calculation of data. These databases are highly optimized for read-heavy operations, making them ideal for generating reports, dashboards, and analytical queries. Overall, OLAP databases help organizations quickly analyze data to uncover patterns, trends, and insights for better decision-making. Compare and read user reviews of the best OLAP Databases currently available using the table below. This list is updated regularly.

  • 1
    Rockset

    Rockset

    Rockset

    Real-Time Analytics on Raw Data. Live ingest from S3, Kafka, DynamoDB & more. Explore raw data as SQL tables. Build amazing data-driven applications & live dashboards in minutes. Rockset is a serverless search and analytics engine that powers real-time apps and live dashboards. Operate directly on raw data, including JSON, XML, CSV, Parquet, XLSX or PDF. Plug data from real-time streams, data lakes, databases, and data warehouses into Rockset. Ingest real-time data without building pipelines. Rockset continuously syncs new data as it lands in your data sources without the need for a fixed schema. Use familiar SQL, including joins, filters, and aggregations. It’s blazing fast, as Rockset automatically indexes all fields in your data. Serve fast queries that power the apps, microservices, live dashboards, and data science notebooks you build. Scale without worrying about servers, shards, or pagers.
    Starting Price: Free
  • 2
    Apache Druid
    Apache Druid is an open source distributed data store. Druid’s core design combines ideas from data warehouses, timeseries databases, and search systems to create a high performance real-time analytics database for a broad range of use cases. Druid merges key characteristics of each of the 3 systems into its ingestion layer, storage format, querying layer, and core architecture. Druid stores and compresses each column individually, and only needs to read the ones needed for a particular query, which supports fast scans, rankings, and groupBys. Druid creates inverted indexes for string values for fast search and filter. Out-of-the-box connectors for Apache Kafka, HDFS, AWS S3, stream processors, and more. Druid intelligently partitions data based on time and time-based queries are significantly faster than traditional databases. Scale up or down by just adding or removing servers, and Druid automatically rebalances. Fault-tolerant architecture routes around server failures.
  • 3
    QuestDB

    QuestDB

    QuestDB

    QuestDB is a relational column-oriented database designed for time series and event data. It uses SQL with extensions for time series to assist with real-time analytics. These pages cover core concepts of QuestDB, including setup steps, usage guides, and reference documentation for syntax, APIs and configuration. This section describes the architecture of QuestDB, how it stores and queries data, and introduces features and capabilities unique to the system. Designated timestamp is a core feature that enables time-oriented language capabilities and partitioning. Symbol type makes storing and retrieving repetitive strings efficient. Storage model describes how QuestDB stores records and partitions within tables. Indexes can be used for faster read access on specific columns. Partitions can be used for significant performance benefits on calculations and queries. SQL extensions allow performant time series analysis with a concise syntax.
  • Previous
  • You're on page 1
  • Next