Best Real-Time Analytic Databases

What are Real-Time Analytic Databases?

Real-time analytics databases are database systems that enable businesses to access and analyze data in near real-time. These systems allow companies to make decisions quickly based on up-to-date information, rather than relying on periodic reports from other databases. Real-time analytic databases typically have powerful processors capable of handling complex queries and vast amounts of data. They also support modern features such as distributed computing, automated data management, secure sharing of sensitive information, and elastic scalability. Such advanced capabilities help organizations gain deeper insights into their customers' behavior so they can take appropriate action swiftly. Compare and read user reviews of the best Real-Time Analytic Databases currently available using the table below. This list is updated regularly.

  • 1
    StarTree

    StarTree

    StarTree

    StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. • Gain critical real-time insights to run your business • Seamlessly integrate data streaming and batch data • High performance in throughput and low-latency at petabyte scale • Fully-managed cloud service • Tiered storage to optimize cloud performance & spend • Fully-secure & enterprise-ready
    View Software
    Visit Website
  • 2
    Rockset

    Rockset

    Rockset

    Real-Time Analytics on Raw Data. Live ingest from S3, Kafka, DynamoDB & more. Explore raw data as SQL tables. Build amazing data-driven applications & live dashboards in minutes. Rockset is a serverless search and analytics engine that powers real-time apps and live dashboards. Operate directly on raw data, including JSON, XML, CSV, Parquet, XLSX or PDF. Plug data from real-time streams, data lakes, databases, and data warehouses into Rockset. Ingest real-time data without building pipelines. Rockset continuously syncs new data as it lands in your data sources without the need for a fixed schema. Use familiar SQL, including joins, filters, and aggregations. It’s blazing fast, as Rockset automatically indexes all fields in your data. Serve fast queries that power the apps, microservices, live dashboards, and data science notebooks you build. Scale without worrying about servers, shards, or pagers.
    Starting Price: Free
  • 3
    Materialize

    Materialize

    Materialize

    Materialize is a reactive database that delivers incremental view updates. We help developers easily build with streaming data using standard SQL. Materialize can connect to many different external sources of data without pre-processing. Connect directly to streaming sources like Kafka, Postgres databases, CDC, or historical sources of data like files or S3. Materialize allows you to query, join, and transform data sources in standard SQL - and presents the results as incrementally-updated Materialized views. Queries are maintained and continually updated as new data streams in. With incrementally-updated views, developers can easily build data visualizations or real-time applications. Building with streaming data can be as simple as writing a few lines of SQL.
    Starting Price: $0.98 per hour
  • 4
    Apache Doris

    Apache Doris

    The Apache Software Foundation

    Apache Doris is a modern data warehouse for real-time analytics. It delivers lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within a second. Storage engine with real-time upsert, append and pre-aggregation. Optimize for high-concurrency and high-throughput queries with columnar storage engine, MPP architecture, cost based query optimizer, vectorized execution engine. Federated querying of data lakes such as Hive, Iceberg and Hudi, and databases such as MySQL and PostgreSQL. Compound data types such as Array, Map and JSON. Variant data type to support auto data type inference of JSON data. NGram bloomfilter and inverted index for text searches. Distributed design for linear scalability. Workload isolation and tiered storage for efficient resource management. Supports shared-nothing clusters as well as separation of storage and compute.
    Starting Price: Free
  • 5
    Timeplus

    Timeplus

    Timeplus

    Timeplus is a simple, powerful, and cost-efficient stream processing platform. All in a single binary, easily deployed anywhere. We help data teams process streaming and historical data quickly and intuitively, in organizations of all sizes and industries. Lightweight, single binary, without dependencies. End-to-end analytic streaming and historical functionalities. 1/10 the cost of similar open source frameworks. Turn real-time market and transaction data into real-time insights. Leverage append-only streams and key-value streams to monitor financial data. Implement real-time feature pipelines using Timeplus. One platform for all infrastructure logs, metrics, and traces, the three pillars supporting observability. In Timeplus, we support a wide range of data sources in our web console UI. You can also push data via REST API, or create external streams without copying data into Timeplus.
    Starting Price: $199 per month
  • 6
    Aerospike

    Aerospike

    Aerospike

    Aerospike is the global leader in next-generation, real-time NoSQL data solutions for any scale. Aerospike enterprises overcome seemingly impossible data bottlenecks to compete and win with a fraction of the infrastructure complexity and cost of legacy NoSQL databases. Aerospike’s patented Hybrid Memory Architecture™ delivers an unbreakable competitive advantage by unlocking the full potential of modern hardware, delivering previously unimaginable value from vast amounts of data at the edge, to the core and in the cloud. Aerospike empowers customers to instantly fight fraud; dramatically increase shopping cart size; deploy global digital payment networks; and deliver instant, one-to-one personalization for millions of customers. Aerospike customers include Airtel, Banca d’Italia, Nielsen, PayPal, Snap, Verizon Media and Wayfair. The company is headquartered in Mountain View, Calif., with additional locations in London; Bengaluru, India; and Tel Aviv, Israel.
  • 7
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 8
    VeloDB

    VeloDB

    VeloDB

    Powered by Apache Doris, VeloDB is a modern data warehouse for lightning-fast analytics on real-time data at scale. Push-based micro-batch and pull-based streaming data ingestion within seconds. Storage engine with real-time upsert、append and pre-aggregation. Unparalleled performance in both real-time data serving and interactive ad-hoc queries. Not just structured but also semi-structured data. Not just real-time analytics but also batch processing. Not just run queries against internal data but also work as a federate query engine to access external data lakes and databases. Distributed design to support linear scalability. Whether on-premise deployment or cloud service, separation or integration of storage and compute, resource usage can be flexibly and efficiently adjusted according to workload requirements. Built on and fully compatible with open source Apache Doris. Support MySQL protocol, functions, and SQL for easy integration with other data tools.
  • 9
    Arroyo

    Arroyo

    Arroyo

    Scale from zero to millions of events per second. Arroyo ships as a single, compact binary. Run locally on MacOS or Linux for development, and deploy to production with Docker or Kubernetes. Arroyo is a new kind of stream processing engine, built from the ground up to make real-time easier than batch. Arroyo was designed from the start so that anyone with SQL experience can build reliable, efficient, and correct streaming pipelines. Data scientists and engineers can build end-to-end real-time applications, models, and dashboards, without a separate team of streaming experts. Transform, filter, aggregate, and join data streams by writing SQL, with sub-second results. Your streaming pipelines shouldn't page someone just because Kubernetes decided to reschedule your pods. Arroyo is built to run in modern, elastic cloud environments, from simple container runtimes like Fargate to large, distributed deployments on the Kubernetes logo Kubernetes.
  • Previous
  • You're on page 1
  • Next