Compare the Top Free Time Series Intelligence Software as of June 2025

What is Free Time Series Intelligence Software?

Time series intelligence software enables organizations to generate insights from raw time series data. Time series intelligence software, sometimes referred to as time series analytics software, provides features so that data teams can conduct analysis, visualize trends, forecast, and predict outcomes based on time series data. Compare and read user reviews of the best Free Time Series Intelligence software currently available using the table below. This list is updated regularly.

  • 1
    Trendalyze

    Trendalyze

    Trendalyze

    Decisions can't wait. Compress machine learning projects from months to minutes. Like Google, our AI search engine brings you insights instantly. Inaccuracy costs money. Patterns reveal what KPIs and averages miss. TRND uncovers the patterns that provide the early warning signs missing from the KPIs. Empower the decision maker. Trends are most relevant to decision-makers who want to know whether a threat or an opportunity is bubbling up. In the digital economy knowledge is money. TRND enables creation of sharable pattern libraries that facilitate fast learning and deployment for business improvement. If you can't monitor all, you monetize none. TRND doesn't just find needles in haystacks; it constantly monitors all needles for relevant information. If you can't afford it, you can't do it. It used to be that scale broke the bank. Our search-based approach makes micro monitoring at scale affordable.
  • 2
    Warp 10
    Warp 10 is a modular open source platform that collects, stores, and analyzes data from sensors. Shaped for the IoT with a flexible data model, Warp 10 provides a unique and powerful framework to simplify your processes from data collection to analysis and visualization, with the support of geolocated data in its core model (called Geo Time Series). Warp 10 is both a time series database and a powerful analytics environment, allowing you to make: statistics, extraction of characteristics for training models, filtering and cleaning of data, detection of patterns and anomalies, synchronization or even forecasts. The analysis environment can be implemented within a large ecosystem of software components such as Spark, Kafka Streams, Hadoop, Jupyter, Zeppelin and many more. It can also access data stored in many existing solutions, relational or NoSQL databases, search engines and S3 type object storage system.
  • Previous
  • You're on page 1
  • Next