
PROBABILISTIC POLYNOMIAL TIME ALGORITHMS
& CRYPTOGRAPHY

BURTON ROSENBERG
UNIVERSITY OF MIAMI

Contents

1. Problems and Algorithms 1
1.1. Problem Instances 2
1.2. Algorithms 2
1.3. Formalization 3
1.4. Asymptotic Efficiency 4
2. Tractable Algorithms 5
2.1. Polynomial Time Algorithms 6
2.2. Probabilistic Polynomial Time Algorithms 7
3. Adversarial Indistinguishability Games 8
3.1. Oracle Machines 8
3.2. Eavesdropping Model of Security 9
3.3. Perfect Security 9
3.4. CPA and CCA Models of Security 10
4. References 11

1. Problems and Algorithms

The problem of cryptography is how to prove security against an
unknown adversary. The model of the adversary must therefore be
a wide as possible, and then reasonable restrictions be placed on the
adversary to have practical results. A pure theory of cryptography,
based on information theory, shows that perfect encryption is possible,
but the condition under which the result holds is impractical. What is
believed about the adversary, is that it is a logical machine, a computer,
that has a cost for its resources. The adversary is an algorithm. We
need to learn to measure and categorize algorithms, and play games
which match one algorithm against another, in very general ways.

Date: October 19, 2019. Updated: October 27, 2019.
1

2 BURTON ROSENBERG UNIVERSITY OF MIAMI

Problems are also arranged by the size. In the case of sorting, it is
both the size of the numbers to sort and the number of numbers to
sort.

1.1. Problem Instances. Algorithms solve problems. In the theory
we are developing, a problem is actually a family of problem instances.
For instance, the problem of sorting has as an instance a specific list of
n integers. If the problem family is finite, a table can list all problem-
solution pairs. In the case of a very large but finite set of problem
instances, an algorithm, implemented by a program that takes many
fewer lines than the table, is a preferable way to encode the table.
When the problem set is infinite however an algorithm is synonymous
with solving the problem. It can produce any solution, on demand,
from a small number of lines of code.

1.2. Algorithms. The study of algorithms is concerned with solving
problems, and finding efficient solution to problems. The cost of a
solution is the number of steps taken to produce the solution, and
also the number of memory cells used during the run of the algorithm.
The first measure is the time complexity of the algorithm, the second
measure is the space complexity of the algorithm.

An algorithm is made up of a sequence of steps, each step considered
reasonable for a unit of computational work. For instance, an addition
of two integers of bounded size, or a decision to continue with the
next step, or jump forward steps, based on the outcome of a short
logical calculation. The steps can be arranged in blocks that are run
repeatedly, so that the number of steps executed far exceed the number
of lines written.

Algorithms also use data, which is abstracted as a potentially infinite
series of labelled cells, each cell capable of being marked with a symbol
from a finite set of memory marks. In practice — memory is an array
of bytes, each byte containing an integer 0 through 255.

A good example for this discussion is pseudo-code description in
the book Introduction to Algorithms by Cormen, Leiserson, Rivest and
Stein. The pseudo code is a sort of platform neutral, syntax permissive,
programming language for the purpose of identifying and counting the
number of steps taken during the run of the algorithm. While one can
reference that book for more details, if one has programming experi-
ence, then it is generally correct to understand a step as a statement.
The number of statements run can be larger than the number of state-
ments written when loops or recursive calls cause the same statements
to be run multiple times.

PROBABILISTIC POLYNOMIAL TIME ALGORITHMS & CRYPTOGRAPHY 3

see - github.com/burtr/Workbook/crypto

def is_natural(N):

"""

N is a finite string over 0,1

"""

t1 = False

t2 = False

for n in N:

if not t1:

t1 = True

else:

t2 = True

last_n =n

if t1:

return (not t2) or (last_n==1)

reject the empty string

return False

Figure 1: Recognizing a natural number

1.3. Formalization. The theoretical apparatus for stating and rea-
soning about problems and algorithms, is to abstract a problem as a
language, and the algorithm that solves the problem, as a device that
recognizes the language.

Example: The language of addition of natural numbers D, would
be a subset of the space of triples of digit strings, in which the first
element, is equal to the sum of the second and third elements,

D = {x, y, z ∈ N ×N ×N |x ≤ y+ }.

We could further formalize the set of naturals N as any finite string of
zero’s and one’s either ending with a 1 or is the length one string 0,

N = { 0 } ∪ { (0|1)∗1 }.

Note that this is a “little endian” representation of the naturals, where
the least significant digit is the first (leftmost) digit. So, 6 would be
the string 011, not 110.

An algorithm to recognize the set N is given in Figure 1. An algo-
rithm to recognize the set D is given in Figure 2.

Typically, an algorithm is thought of as something that computes a
result, rather than which recognizes a result when given. If a result

4 BURTON ROSENBERG UNIVERSITY OF MIAMI

for addition_rules and carry_rules and

full program see -

github.com/burtr/Workbook/crypto

def is_sum(D,E,F):

"""

D, E and F are a finite strings over 0,1

"""

if not all([is_natural(D),

is_natural(E), is_natural(F)]):

return False

carry = False

D, E, F = extend_longer(D,E,F)

for d, e, f in zip(D, E, F):

if (d,e,f,carry) not in addition_rules:

return False

else:

carry = (e,f,carry) in carry_rules

return True

Figure 2: Recognizing the addtion of natural numbers,

can be computed, say z = f(x, y), then it can be recognized,

f̂(z, x, y) = (z == f(x, y)).

The looseness this gives in the other direction, whether a recognizer
can be used to calculate, will be used in discussing non-deterministic
algorithms. Since the space of the answer is enumerable, if there is a
stopping rule, at worse one can enumerate all possible answers until
either the stopping rule applies or the recognizer accepts some result.

In cases such as over the naturals, where the search for the answer is
on a totally ordered set, the recognizer might be slightly modified, for
instance, recognizing (z ≤ x + y), and binary search for z used, rather
than blind enumeration, see Figure 3.

1.4. Asymptotic Efficiency. It is not convenient, necessary, or de-
sirable, to step count precisely. In a code such as Figure 4, the run
time is

T (n) = TA + nTB + TC

as a function of n, where TA is the number of steps in the code block
A, etc.. ’

PROBABILISTIC POLYNOMIAL TIME ALGORITHMS & CRYPTOGRAPHY 5

def do_sum(D,E,F,):

"""

D is a recognizer for d <= e+f

E and F are a finite strings over 0,1

"""

if D(0,e,f):

return True

d = 1

while True:

if not D(d,e,f):

d = concatenate(0,d)

c = d

d = remove_left(d)

while d:

if D(merge(c,d),e,f):

c = merge(c,d)

return c

Figure 3: Adding using recognition

Overestimating all these times and factoring them together, we get
that the number of steps taken by the algorithm in Figure 4 is propor-
tional to n, the number of items in array a. It maybe be possible to
modify the code blocks to vary the exact number of steps, but what
asymptotic efficiency focuses on is the growth of work as a function of
n. For findmax it is linear.

The big-Oh notation summarizes this by saying the algorithm runs
in time O(n). The definition of O(f) is a set of functions which are
bounded above by f , allowing for the linear scale of the range and
ignoring any finite behavior in the domain,

O(n) = { f : N → R|∃N > 0,∃c > 0,∀n ≥ N, c n ≥ f(n) ≥ 0 }
If this notation is unfamiliar then it should be reviewed. It is of crucial
importance in the definition of PPT algorithms.

2. Tractable Algorithms

In the movie The Imitation Game, there is an exciting race between
Alan Turing’s computations to break the Enigma and Commander
Alastair Denniston wishing to shut down the Bombe that was doing
the computation. Although a problem might be theoretically solvable
by and algorithm, if the algorithm requires too much resource, either

6 BURTON ROSENBERG UNIVERSITY OF MIAMI

find_max(a[], n):

{

// code block A

i = 1

biggest = a[0]

}

while (i++<n) {

// code block B

if (biggest < a[i])

biggest = a[i]

}

{

// code block C

print(biggest)

}

Figure 4: A simpleO(n) algorithm

memory space or computation steps, then the solution remains theo-
retical. Problems that require so much resource are called intractable.
Our adversary will have to be realized, and therefore its algorithm must
be tractable, meaning the time and space can be provided.

In code breaking one is up against a natively intractable problem,
to find a needle in an exponentially large haystack. However, besides
the depiction in the film being historically bogus, Turing and others
were finding avenues of tractability that allowed Enigma messages to be
read. This is what is means to break a cipher — to provide a tractable
method to find that needle.

In this section we describe both deterministic and probabilistic poly-
nomial time algorithms, and identify such algorithms with tractable
computation.

2.1. Polynomial Time Algorithms. In practice, the distinction be-
tween linear algorithms, running in time O(n), and (say) quadratic
algorithms running in time O(n2) is significant. In the first case the
algorithm runs as fast as the data can be read; in the second case, there
is a definite increase in work as the problem size grows. For each factor
of k increase in problem size, the number of steps in the solution in-
creases by k2. However, cryptography is indifferent to such refinement.
Either we are resistant to an computational adversary or we are not.
With this in mind we focus of algorithms with run time O(nk) for any

PROBABILISTIC POLYNOMIAL TIME ALGORITHMS & CRYPTOGRAPHY 7

k,

P =
⋃
k>1

O(nk)

Definition 2.1 (P time). An algorithm with efficiency in P is called
a polynomial time (P-time) algorithm.

The focus on P-time algorithms is because,

(1) The class is robust. Changes in computational model, and the
inability to precisely identify the complexity of the problem
generally do not make problems enter or leave this class.

(2) Algorithms not in this class consume additional resource with
almost exponentially increasing hunger with increasing n, they
are only solutions in principle, not in fact, as sufficient resources
cannot be supplied.

2.2. Probabilistic Polynomial Time Algorithms. So far all al-
gorithms we are considering are deterministic. On a given problem
instance, the steps taken are always the same on each run. They also
have a uniform time bound — not a single problem instance is permit-
ted to exceed the time allocated for a problem of that size.

However, we need a wider variety of algorithms at our disposal —
algorithms that include the element of chance. Algorithms solving
cryptographic puzzles will often make guesses and hope for the best.
The effectiveness of an adversary will less be how quickly it works but
how often it works. We need to include non-deterministic algorithms
that can have various outcomes on any given problem instance. Varia-
tions include how often the algorithm succeeds or how often the given
output is a correct answer.

For a probabilistic algorithm A, along with the problem instance x,
the algorithm is supplied with a sufficiently long random tape ω ∈ Ω.
At points of decision, the algorithm can consult ω for the next random
bit in sequence, and branch its computation according to the bit. Laid
out this way, on a given x the computation is not linear sequence, but
a branching tree, each path caused by differing bits in ω.

The time bound on A is uniform for all problems of size n, and for all
computation paths ω. If the time bound is some polynomial p(n), the
ω is in fact chosen uniformly at random from the space Ω = {0, 1}p(n),
and any event S ⊆ Ω has probability,

P [S] = |S |/2p(n).

Different computation paths can lead to different results. In a decision
problem, the possibilities are T, F, and possibly ⊥ to signify either an

8 BURTON ROSENBERG UNIVERSITY OF MIAMI

error, the algorithm being halted for time, or no conclusive result. The
algorithm is a sort of random variable,

A∗(x) : Ω −→ {T, F,⊥}
ω 7−→ Aω(x)

with probability the measure on Ω of those random strings leading to
the result,

Pr[Aω(x) == 1] = Pr[{ω ∈ Ω |Pω(x) == 1 }].

Definition 2.2 (PPT Algorithm). A Probabilistic Polynomial Time
Algorithm is a P-time algorithm Aω(x); where the polynomial bound in
input length n applies uniformly for all inputs x of length n and for all
random tapes ω; and where ω ∈ Ω is drawn independently, uniformly
at random for each run of the algorithm; and with outcomes stated as
a probability.

3. Adversarial Indistinguishability Games

3.1. Oracle Machines. About schemes of interacting machines, and
in particular, the oracle scheme, in which the main algorithm can seek
answers by querying another machine, called the oracle. An oracle
query counts only as one computational step, and the computational
power of the oracle will be much greater than that given the main
algorithm, or else contains secret information that is difficult to extract,
else the algorithm could answer the query itself, without help of the
oracle.

A typical notation for an oracle E provided to a PPT algorithm A
is AE .

The oracle scheme will be used in the next section, where we define
a competition between an encryption algorithm, provided as an oracle
E , a PPT algorithm called the Adversary A that is mediated by an
algorithm called the Protocol, Π,

Eav EA,Π(n)

The notation is a bit intense.

(1) The n is essentially the number of bits in the encryption. The
definition intends that the encryption be defined for arbitrary
n, which will be a security parameter. The larger the n, the
greater the security.

(2) The encryption is superscripted as an oracle, and it is the sub-
ject of the game, it is what is being tested for security.

(3) The adversary and protocol interact, and are placed in the sub-
script.

PROBABILISTIC POLYNOMIAL TIME ALGORITHMS & CRYPTOGRAPHY 9

(4) The protocol is fixed and is part of the eavesdropping model.
However the adversary can be any PPT algorithm.

3.2. Eavesdropping Model of Security. We have introduced the
PPT algorithm to model what in reality will be our adversary. We
now place that adversary against an encryption to see if it can win.
The protocol models our beliefs about the sort of attack that will be
undertaken.

Definition 3.1. Adversary-Protocol games: Adversarial Indistin-
guishability under an Eavesdropping model for encryption E is com-
prised of an encryption scheme,

E = (Gen(n), Enck, Deck),

and an Adversary-Protocol complex [A,Π], that has the following in-
teraction,

(1) A security parameter n is announced, n ∈ N ;
(2) Π chooses a bit b ∈U {0, 1}, and chooses a key k ← Gen(n),

generated uniformly at random;
(3) Independently, A chooses two message, m0 and m1 of equal

length and delivers them to Π;
(4) Π responds with c = Enck(mb);

(5) A decides and announces a bit b̃ ∈ {0, 1}.
The value of Eav EA,Π(n) is (b == b̃).

Definition 3.2. Adversarial Indistinguishability: An encryption
scheme E has Adversarial Indistinguishability if, for any PPT adversary
A,

Pr[Eav EA,Π(n)] ≤ 1/2 + g(n)

for a negligible function g(n).

Because the coin b is fair, any adversary can achieve success with
probability 1/2 by guessing randomly, or even by guessing always 0 or
1. Hence there can be no weakness in E as there is no reference to E .

Also, a small advantage is allowed. For instance, the advantage that
the adversary achieves by a brute force attack shown in Figure 5.

3.3. Perfect Security. The one time pad, or Vernon cipher is an
example of a secure cipher in the eavesdropper model. The security of
the cipher is perfect, the negligible function can be g(n) = 0,

The cipher works on a plaintext of 0’s and 1’s of length m, 〈pi〉 by
creating m random bits 〈ri〉 exclusively or’ing plaintext and the random
bits,

〈ci〉 = 〈pi ⊕ ri〉.

10 BURTON ROSENBERG UNIVERSITY OF MIAMI

def brute_force_attack(m0, m1, c):

k0 = k1 = None

for k in Keys:

if c = E(k,m0):

k0 = k

if c = E(k,m1):

k1 = k

if k0 == None:

return 1

if k1 == None:

return 0

return None

Figure 5: A brute force attack for the adversary

The random string is then provided as the key to decode,

〈ci ⊕ ri〉 = 〈pi ⊕ ri ⊕ ri〉 = 〈pi〉.

The security is perfect but with the disadvantage that the key is large
and it can only be used once.

That the security is perfect can be seen from this argument. Suppose
rather than encrypt the plaintext, the cipher ignored the plaintext and
just set the ciphertext to a completely random string. Then the key is
calculated by the encipherer as,

〈ri〉 = 〈pi ⊕ ci〉.

All that has happened is that the key and the ciphertext have changed
places in the order they are created. However, there is no way exterior
to the encipherment that this can be known.

That is to say, sending the ciphertext of a Vernon cipher is equiva-
lent to sending a random string of bits, without any reference to the
plaintext.

3.4. CPA and CCA Models of Security. The model of Eavesdrop-
per security is too weak. Even the Vernon cipher can be broken by
a chosen plaintext attack, even though this cipher is Eavesdropping
secure. The attacker sends a bit string of zero’s to be encrypted, and
the encryption returns the key. True, this key should never be reused,
but if somehow it does get reused, then the attacker can immediately
decrypt the message.

A model that resists chosen plaintext attacks, CPA, is also preferred
over EAV because it is safe for multiple messages.

PROBABILISTIC POLYNOMIAL TIME ALGORITHMS & CRYPTOGRAPHY 11

The game for CPAEA,Π is like for the eavesdropper, except that the
adversary is given oracle access to the encryption. The adversary is
in fact AE . The protocol Π draws a key at random, loads it into
the encryption oracle, and the adversary can then run whatever test
encryption it wishes.

While CPA security is a very good model, and one that is in use, it
still has a weakness when confronted with a chosen ciphertext attack.
In these attacks, we will allow the adversary to have oracle access to
both an encryption oracle and a decryption oracle.

The game for CCAEA,Π is like the CPA game except the adversary

is actually AE,D. A rule has to be made, however, that the adversary
cannot query the decryption oracle for the challenge ciphertext.

We described a CPA secure cipher that generates a random sequence
〈ri〉 and encrypts,

〈ci〉 = 〈pi ⊕ ri〉.
The CCA attacker can generate and sequence 〈qi〉 and ask for a de-
cryption of 〈ci ⊕ qi〉, which the protocol will permit, and the attacker
receives back 〈pi ⊕ qi〉. A then reapplies the qi sequence and now has
recovered the plaintext.

4. References

Introduction to Modern Cryptography, by Jonathan Katz and Yehuda
Lindell. First edition was 2007.

Introduction to Algorithms, Cormen, Leiserson, Rivest and Stein.

Probabilistic Encryption, S. Goldwasser and S. Micali, J. of Computer
and System Sciences, Vol. 28, April 1984, pp 270–299.

A Concrete Security Treatement of Symmetric Encryption, M. Bel-
lare, A. Desai, E. Jokipii, P. Rogaway. Extended abstract in the
Proceedings of the 38th Symposium of Foundations of Computer
Science, IEEE, 1997. Full paper September 2000.

	1. Problems and Algorithms
	1.1. Problem Instances
	1.2. Algorithms
	1.3. Formalization
	1.4. Asymptotic Efficiency

	2. Tractable Algorithms
	2.1. Polynomial Time Algorithms
	2.2. Probabilistic Polynomial Time Algorithms

	3. Adversarial Indistinguishability Games
	3.1. Oracle Machines
	3.2. Eavesdropping Model of Security
	3.3. Perfect Security
	3.4. CPA and CCA Models of Security

	4. References

