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Abstract

We investigate the use of unlabeled data to help labeled data in classification.
We propose a simple iterative algorithm, label propagation, to propagate labels
through the dataset along high density areas defined by unlabeled data. We give
the analysis of the algorithm, show its solution, and its connection to several
other algorithms. We also show how to learn parameters by minimum spanning
tree heuristic and entropy minimization, and the algorithm’s ability to do feature
selection. Experiment results are promising.
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1 Introduction

Labeled data are essential for supervised learning. However they are often
available in small quantities, while unlabeled data may be abundant. Using
unlabeled data together with labeled data is of both theoretical and practical
interest. There has been many proposed approaches recently [See01]. Among
them there is a promising family of methods analogous to k-Nearest-Neighbor
(kNN) in traditional supervised learning. These methods assume that closer
data points tend to have similar class labels. As a result, they propagate labels
through dense unlabeled data regions.

We propose a new algorithm to propagate labels. We formulate the problem
as a particular form of label propagation, where a node’s labels propagate to
neighboring nodes according to their proximity. Meanwhile we clamp the labels
on the labeled data. Thus labeled data act like sources that push out labels
through unlabeled data. We prove the convergence of the algorithm, and analyze
its behavior on several datasets. We also propose a minimum spanning tree
heuristic and an entropy minimization criterion to learn the parameters, and
show our algorithm can learn to detect irrelevant features.

2 Label Propagation

2.1 Problem Setup

Let (z1,y1)...(z1,u1) be labeled data, where Y7, = {y:1...y;} are the class
labels. We assume the number of classes C' is known, and all classes are present
in the labeled data. Let (%j41,%141) - - - (Ti4w,Yi+w) be unlabeled data where
Yu = {¥i+1---Yitu} are unobserved, usually I < u. Let X = {x1...%144}
where z; € RP. The problem is to estimate Yy from X and Yz, which is a
transductive learning setting.

Intuitively, we want data points that are close to have similar labels. We
create a fully connected graph where the nodes are all data points, both labeled
and unlabeled. The edge between any nodes 7, j is weighted so that the closer
the nodes are in local Euclidean distance, the larger the weight w;;. The weights
are controlled by a parameter o:
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Other choices of distance metric are possible, and may be more appropriate
if the x are, for example, positive or discrete. We have chosen to focus on
Euclidean distance in this report, later allowing different o’s for each dimension,
corresponding to length scales in Guassian processes.

All nodes have soft labels that can be interpreted as distributions over labels.
We let the labels of a node to propagate to all nodes through the edges. Larger



edge weights allow labels to travel through easier. Define a (I + u) x (I + u)
probabilistic transition matrix T
N Wi
Tij:P(]%Z):H_+ (2)
k=1 Wkj

where Tj; is the probability to jump from node j to i. Also define a (I +u) x C
label matrix Y, whose ith row representing the label probability distribution of
node x;. The initialization of rows of Y corresponding to unlabeled data points
is not important. We are now ready to present the algorithm.

2.2 The Algorithm
The label propagation algorithm is as follows:
1. Propagate Y <+ TY
2. Row-normalize Y.
3. Clamp the labeled data. Repeat from step 1 until Y converges.

In step 1, all nodes propagate their labels (including self loop) for one step.
In step 2 we row-normalize Y to maintain the label probability interpretation.
Step 3 is critical: we want persistent label sources from labeled data. So instead
of letting the initially labeled nodes fade away, we replenish them by clamping
their label distribution to Y;. = d(y;, ¢), i.e. the probability mass is concentrated
on the given class. With this constant 'push’ from labeled nodes, the class
boundaries will be pushed through high density data filaments and settle in
low density gaps. If this structure of data fits the classification goal, then our
algorithm can use unlabeled data to help learning.

2.3 Convergence

We now show the algorithm converges to a simple solution. First, step 1 and 2
can be combined into

Y «TY (3)
with T being the row-normalized matrix of T, i.e. Tij =T/ > Tir- Let Y
be the | x C matrix formed by the top ! rows of ¥ (the labeled data) and Yy
be the u x C' matrix of the remaining u rows. Notice Y}, never change because
of the clamping so we are solely interested in Y;;. We split T after the I-th row
and the /-th column into 4 sub-matrices
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It can be shown that our algorithm is

Yo + TwuYu + TuYr (5)



which leads to N
Yy = lim Ty, v° + [; T VTuYy (6)

i=
where Y is the initial Y. We need to show T2 Y® — 0. By construction, all

elements in T is greater than zero. Since T' is row normalized, and Ty is a
sub-matrix of T, it follows

u
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Therefore
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So the row sums of T, converges to zero, which means T, Y° — 0. Thus the
initial point Y? is inconsequential. Obviously

YU = (I - Tuu)_ITulYL (12)

is a fixed point. Therefore it is the unique fixed point and the solution to our
iterative algorithm. This gives us a way to solve the label propagation problem
directly without iterative propagation. The solution can often be obtained by
solving a sparse system of linear equations (i.e. if we truncate small elements
on T,), which can be efficient.

2.4 Parameter Setting

We set the parameter o with the following heuristic. We find a minimum span-
ning tree over all data points with Euclidean distances d;;, with Kruskal’s Algo-
rithm [Kru56]. In the beginning no node is connected. During tree growth, the
edges are examined one by one from short to long. An edge is added to the tree
if it connects two separate components. The process repeats until the whole
graph is connected. We find the first tree edge that connects two components
with different labeled points in them. We regard the length of this edge d° as
a heuristic to the minimum distance between class regions. We arbitrarily set
o = d° /3 following the 3¢ rule of Normal distribution, so that the weight of this
edge is close to 0, with the hope that local propagation is then mostly within
classes.



2.5 Rebalancing Class Proportions

For classification purpose, once Yy is computed, we can take the most likely
(ML) class of each unlabeled point as its label. This way we have no control
over the final proportion of classes, because it is implicitly determined by the
distribution of data. It is appropriate when classes are well separated or labeled
data abound. If it is not the case, however, incorporating constraints on class
proportions can improve final classification. We assume the class proportions
Py ...Pc (3°,P. =1) are either estimated from labeled data or known a priori
(i.e. from an oracle). We propose two post-processing alternatives to ML class
assignment:

e (Class Mass Normalization

After computing Yy, we normalize the class mass to fit the class propor-
tion constraint. The class mass is the column sums of Yy, denoted by
Yy, ...Yy,.. We scale each column such that Yy, : ... : Yy, = P :
... : Po. The label of a point is the class with the maximum element
in that row after scaling. The approach does not guarantee strict label
proportion.

e Label Bidding

We have uP, class c labels for sale, for c = 1...C. After computing Yy,
we view each point ¢ as having bids $Yy,_ for class ¢. Bids are processed
from high to low. Assuming Yy, is currently the highest bid. If class ¢
labels remain, a ¢ label is sold to point ¢, and point ¢ quits the bidding.
Otherwise the bid Yy,, is ignored and the second highest bid is processed,
and so on. Label bidding guarantees that strict label proportions will be
met.

3 Experimental Results

To demonstrate properties of this algorithm we investigate both synthetic datasets
and a real-world classification problem. Figure 1 shows a synthetic dataset with
3 classes, each being a narrow horizontal band. Data points are randomly drawn
from the classes. There are 3 labeled points and 178 unlabeled points. As ex-
pected, kNN algorithm (k = 1) ignores the band structure within the dataset,
while our algorithm takes advantage of it and propagates labels along the bands.
In this example, we used o = 0.22 from the MST heuristic, and ML classifica-
tion.

Similarly, Figure 2 shows a synthetic dataset with 2 classes as intertwined
three dimensional springs. There are 2 labeled points and 184 unlabeled points.
Again, kNN fails to notice the structure of unlabeled data, while our algorithm
finds the springs. We used ¢ = 0.43 from MST and ML classification.
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Figure 1: The 3 Bands dataset. Labeled data are color symbols and unlabeled
data are dots in (a). kNN ignores unlabeled data structure, while label propa-
gation uses it.
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(a) The data (b) kNN (c) Label propagation

Figure 2: The Springs dataset.

For a real world example, we test label propagation on a handwritten digits
dataset. The original dataset was from the Cedar Buffalo binary digits database
[Hul94]. The digits were then preprocessed to reduce the size of each digit image
down to 16x16 by down-sampling and Gaussian smoothing. This interpolation
thus created gray-scale with pixel values range from 0 to 255 [CBD*90]. We
use digits 1, 2 and 3 in our experiment as three classes. Each class has 1100
images, with a total of 3300. Each image is represented by a 256 dimensional
vector. Figure 3(a) shows a random sample of 100 images from the dataset.

We perform label propagation on random labeled / unlabeled splits of the
dataset, and measure classification error rates on the unlabeled data. We vary
labeled data size [ from 3 up to 100. For a given labeled data size, we perform 20
trials. In each trial we randomly sample labeled data from the whole dataset,
and use the rest images as unlabeled data. If any class is absent from the
sampled labeled set, we redo the sampling. Thus labeled and unlabeled data
are approximately iid. We then run the minimum spanning tree algorithm on
the split to find o. All trials have o close to 340. To speed up computation,
only the top 150 neighbors are considered for each image when constructing the
transition matrix 7. We measure the error rates of:



1. ML: The most likely labels (see section 2.5).

2. CNe: Class mass normalization post processing, with maximum likelihood
estimate of class proportions from labeled data.

3. LBe: Label bidding post processing, with maximum likelihood estimate
of class proportions from labeled data.

4. CNo: Class mass normalization post processing, with knowledge of the
oracle (true) class proportions (i.e. 1/3).

5. LBo: Label bidding post processing, with oracle class proportions.

We use two alternative algorithms as baselines. The first one is standard £NN.
We report 1NN error rate since it is the best among k¥ = 1...11. The second
baseline algorithm is ‘propagating 1NN’ (pINN): Among all unlabeled data,
find the point z, closest to a labeled point (call it z;). Label z, with z;’s
label, add z, to the labeled set, and repeat. p1NN is a crude version of label
propagation. It performs well on the two synthetic datasets, with the same
results as in Figures 1(c) and 2(c).

Figure 3(b)—(f) shows the results. In (b), when [ is small, ML labeling is
worse than 1NN, but when [ > 40, ML is better. However if we rebalance
class proportions, we can do much better. If we estimate class proportions
from labeled data by class frequency and perform class mass normalization, we
improve the performance when [ is small (¢). (Note, however, that we required
all classes to be present in training set. This biases class frequency towards
uniform, which happens to be the true proportion in this example. This is
especially true when [ = 3, and explains the initial ramp in (c)(d).) If we
have a priori knowledge of the true class proportion on the unlabeled data,
the performance is even better (e,f), with label bidding being slightly superior
to class mass normalization. But it should be noted that we are using extra
information not employed by the baseline algorithms. On the other hand since
label bidding requires exact proportions, its performance is bad when the class
proportions are estimated (d). To summarize, label bidding is the best when
exact proportions are known, otherwise class mass normalization is the best.
Meanwhile pINN consistently performs no better than 1NN. Table 1 lists the
error rates for pINN, INN, ML, CNe and LBo. Each entry is averaged over 20
trials. All differences are statistically significant at « level 0.05 (¢ test), except
for the pairs in bold face.

4 Parameter Learning in Label Propagation

4.1 The Effect of ¢ on Label Propagation

We used minimum spanning trees as a heuristic to set the parameter o. Let’s see
how different o values affect label propagation. Figure 4(a) shows a synthetic



l 3 6 9 12 15 20 25 30
pINN | 46.1 | 34.2 | 35.0 | 29.2 | 23.2 | 17.7 | 15.0 | 14.3
INN | 364 | 28.3 | 27.8 | 23.7 | 19.0 | 15.4 | 13.1 | 12.1
ML | 49.6 | 35.0 | 33.5 | 26.6 | 20.7 | 12.6 9.3 7.0
CNe 6.9 | 123 | 10.6 7.0 5.4 3.4 2.0 1.6
LBo 2.3 2.3 0.8 0.6 0.6 0.5 0.5 0.5

l 35 40 50 60 70 80 90 | 100
pINN | 12,9 | 11.5 | 11.7 | 10.1 9.6 | 8.8| 8.2 7.4
INN | 11.9 | 10.7 | 9.1 8.6 77 7 6.6 6.0
ML 5.0 24 34 2.0 1.5 1.2 1.1 1.0
CNe 1.1 1.1 1.0 0.8 0.8 0.7 0.7 0.7
LBo 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 1: Average error rate over 20 trials with different post processing methods
and sizes of labeled data.

dataset 'Bridge’ which consists of a upper block and a lower block, connected by
a thin bridge. The upper block is on a grid with side 0.95, while the lower one
is on a looser grid with side 1. Points on the bridge have distance 0.67 between
them. There are two labeled points. The dataset simulates two otherwise well
separated classes, corrupted by a few points (the bridge). The pINN algorithm
will propagate the + label in the upper block first, since the block is denser.
And once reaching the bridge, the + label travels down and competes with the
o label in the lower block. As a result, the + label takes the majority of the
territory (Figure 4(b)). This also shows that pINN is susceptible to small noise
in dataset. The standard 1NN algorithm finds a decision boundary bisecting the
labeled points, regardless of the structure of data (Figure 4(c)). Figure 4(d)—(h)
shows the results of label propagation with different ¢ and ML classification.
When ¢ — 0, label propagation result approaches pINN, because under
the exponential weights (1) the influence of the nearest point dominates. when
o — o , it is easy to see that all unlabeled points will have similar class
probabilities, which is the class frequency on labeled data. This is because the
whole dataset essentially shrinks to a single point with large o, and all unlabeled
points receive the same influence from all labeled points. The ’appropriate’ o
is in between (Figure 4(f)). How to learn it? Data likelihood does not make
sense as a criterion in our setting because they are clamped (We can of course
‘'unclamp’ labeled points at the end and let their labels be determined by nearby
unlabeled points. But intuitively we should pay more attention to how unlabeled
data are assigned labels). Instead we minimize the entropy H of the result

H ==Y YlogVi (13)
i

which is the sum of entropy on individual data points. H is a function of o. The



intuition is that a good o should label all points confidently, and thus minimize
H. There are many arbitrary labelings of the unlabeled data that have low
entropy, which might suggest that this criterion would not work. However, it is
important to point out that most of these arbitrary low entropy labelings cannot
be achieved by propagating labels using our algorithm. In fact, we find that the
space of low entropy labelings achievable by label propagation is small and lends
itself well to tuning the o parameters. One complication remains, which is that
H has a minimum 0 at ¢ — 0 (notice ¢ — 0 approaches pINN, and pINN
gives each point a hard label), as Figure 4(i) shows. This (p1NN) is not always
desirable (Figure 4(b,d)), and can be fixed by smoothing the transition matrix,
as we will see next.

4.2 Smoothing the Transition Matrix 7’

Inspired by the analysis on the PageRank algorithm [NZJ01], we smooth T' by
interpolating it with a uniform transition matrix &, where U;; = 1/(l +u), Vi, j:

T=ed+(1—eT (14)

T is then used in place of T in the algorithm. € is the interpolation parameter.
With the smoothed transition matrix 7, when ¢ — 0 the uniform component
dominates (outside the self loop). And the class probabilities are close to uni-
form on unlabeled data, resulting in high entropy H. On the other hand when
o is not very small, the original 7" dominates and the results are the same as
the unsmoothed version. Figure 4(i) shows the curve of entropy H vs. ¢ before
and after smoothing, with different € values. In the following we use the value
€ = 0.0005.

4.3 The Derivative of H

Although we introduced a nuisance parameter € in order to learn o, the advan-
tage will be apparent when we introduce multiple parameters o1 ...op, one for
each dimension. That is, let the weight now be

D 2
wij = exp <_ 3> @) (15)
d

d=1

The o4’s are analogous to the relevance or length scales in Gaussian process.
We use gradient descent to find the parameters o7 . ..op that minimizes H. We
find the derivatives of H w.r.t. g4’s by the chain rule,

OH “Z“ <. OH 8Y;e

Ooq 0Y;. Doy (16)

i=l+1 c=1
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The value 9Y;./0o4 can be read off the matrix 0Yy /004, which is
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where we used the fact dX ! = ~1(dX)X~'. Both 8Tyu/804 and 8T, /B0
are sub-matrices of 0T /9o . Remember T is T row-normalized,
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T is the smoothed transition matrix (eq. (14)), so
6Tmn aTmn
=(1-= 2
B0, 1-9 = (25)
T is the original transition matrix (eq. (2)),
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= (%d Tmnz T ] /XT: Wen, (28)
finally,
owy
60; = 2wy (2} — xf)’ /o (29)



4.4 Examples: Learning Irrelevant Dimensions

We find the optimal o for the datasets in Figures 1 and 2, assuming a single o.
For the ’3 Bands’ dataset, we start from the minimum spanning tree heuristic
o =0.22 (H =110.1), and find the optimal ¢ = 0.26 (H = 94.9). Similarly for
the ’Springs’ dataset, we start from the heuristic ¢ = 0.43 (H = 61.3) and find it
is already the optimal. Both classification remains the same (for all experiments
in this section, we used ML classification). The MST heuristic for these well
separated datasets is close to optimal.

With multiple o’s, for the ’Bridge’ dataset in Figure 4, we start from o1 =
oo = 0.67 (H = 34.2) which is a third the distance between the upper and
lower blocks. After substantial amount of gradient descent iterations, we reach
o1 = 121.3, 02 = 0.55 and H = 21.1. And o, is still increasing while o5 and H
asymptote. The classification result is the same as Figure 4(f). Local minimum
is a problem though, for example, if we start from o1 = o5 = 0.33 which is the
minimum spanning tree heuristic, we would end up with ¢; = 0.44, o5 = 0.69
and H = 35.8.

The ever increasing o; is expected. In the ’Bridge’ dataset, the horizontal
dimension (corresponding to 1) is irrelevant to classification. A large o means
labels can be propagated freely along this dimension. Thus our algorithm detects
that dimension 1 is irrelevant to classification. To further illustrate this, we
create a synthetic dataset 'Ball’, with 400 data points uniformly sampled inside
a 4-dimensional unit hypersphere, and with a 45° gap in dimensions 1-2 (Figure
5). There is no gap in all other two dimensional projection of the dataset. The
gap splits the dataset into two classes, while dimensions 3 and 4 are irrelevant
to classification. There are two labeled points. We start from o1 = 02 = 03 =
o4 = 0.2 (H = 240.9), and reach oy = 0.17, 05 = 0.19, 03 = 2.29, 04 = 7.41
with H = 130.1. While not as dramatic as in the 'Bridge’ dataset, o3 and o4
are very large compared to the radius of the data, and signify the irrelevance of
these two dimensions. The classification at the optimal ¢’s obeys the gap.

To show that our method is not merely looking for structures in unlabeled
data, consider a similar dataset ’Ball2’ which is the same as ’Ball’ except that
there is now also a gap in dimensions 3-4 (Figure 6. There is no gap in dimen-
sions 1-3, 2-3, 2-4). So from unlabeled data point of view, dimensions 3, 4 is as
interesting as dimensions 1, 2. The gap in dimensions 1-2 is related to classifica-
tion while the one in 3-4 is not. But this information is only hinted by 4 labeled
points (Figure 6(a,b)). As before we start from o1 = 02 = 03 = 04 = 0.2
(H = 140.6), and reach oy = 0.18, o» = 0.19, 05 = 14.8, o4 = 13.3 with
H = 78.7. Again our method thinks dimensions 3, 4 are irrelevant, even though
the data are clustered along those dimensions. Classification follows the gap in
dimensions 1,2.
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5 Related Work

The proposed label propagation algorithm is closely related to the Markov ran-
dom walks algorithm [SJO1]. Both utilize the manifold structure defined by
large amount of unlabeled data, and assume the structure is correlated to clas-
sification goal. Both define a probabilistic process for labels to transit between
nodes. But the Markov random walks algorithm approaches the problem from
a different perspective. It uses the transition process to compute the t-step an-
cestorhood of any node ¢, that is, given that the random walk is at node 7, what
is the probability that it was at some node j at ¢ steps before. To understand
the algorithm, it is helpful to imagine that each node has two separate labels,
one hidden and one observable. A node i’s observable label is the average of
all nodes’ hidden labels, weighted by their ancestorhood. This is in fact kernel
regression, with the kernel being the t-step ancestorhood. The hidden labels
are learned such that the likelihood or margin of the observed labels of labeled
data are optimized. The algorithm is sensitive to the time scale ¢, since when
t — oo every node looks equally like an ancestor, and all observable labels will
be the same. In our algorithm, labeled data are constant sources that push out
labels, and the system achieves equilibrium when ¢ — oco.

There seems to be a resemblance between label propagation and mean field
approximation [PA87] [JGJS99]. In label propagation, upon convergence we
have the equations (for unlabeled data)

Zj TiJ'YJ'C
2o 225 TijYer

Consider the labeled / unlabeled data graph as a conditional Markov random
field F with pairwise interaction w;; between nodes i, j, and with labeled nodes
clamped. Each unclamped (unlabeled) node 7 in F can be in one of C' states,
denoted by a vector also called Y; = (6(y;,1),-..,0(y;, C)). The probability of
a particular configuration Y in F is

;e = (30)

1
Pr(Y)= exp[»_ w;; ViY]] (31)
ij
As we will see later, F is related to the Mincut algorithm. We now show label
propagation (30) is approximately a mean field solution to a Markov random
field F' that approximates F. The Markov random field 7' has the same struc-

ture as F, but besides pairwise interactions, 7' has all higher order interactions.
Specifically F' is defined as

Pr(¥) =  expllog(3 wi¥i})] 52)

ij
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is the same as F up to the first order:

Pr(Y) & el iV -1) (33)
= %exp[izjwininT] (34)
= Pp(Y) (35)

To find the mean field approximation to F’', we replace each node i’s state Y;
with its mean value < Y; > and obtain the self consistent equations

1
<Y,> = Z 7 exp[log(z wi;Y; <Yy >T)Y; (36)
Yi J
1
= Z E(Z win,- < Y} >T)Y; (37)
Yi J

which leads to the mean field solution to F':
Ej wi; < Y}c >
2o 2o Wi < Yje >

(30) is an approximation to (38) in the sense that if we assume )", w; are the
same for all 4, we can replace T;; with w;; in (30). Therefore we find that label
propagation is approximately the mean field approximation to F.

With this view, it is easy to compare label propagation to the graph mincut
algorithm [BCO1]. Mincut algorithm finds the minimum cut through a graph to
separate labeled data of different classes. This corresponds to a state configura-
tion with minimum energy, or equivalently the most likely state configuration,
of the same Markov random field F. Label propagation, as we have seen, finds
the most likely state configuration of the approzimate mean field solution of F.
There is a subtle difference between the two algorithms, as in Figure 7. The
dataset is perfectly symmetric with two labeled points. Mincut will label the
middle band with either all + or all o, since these two are the two equally most
likely state configurations [Blu]. But label propagation, being more in the spirit
of a mean field approximation, will split the middle band, classifying points
in the upper half as o and lower half as + (with low confidence though). In
addition, mincut is limited to binary labels while label propagation is not.

Unlike many semi-supervised learning algorithms, in label propagation la-
beled data are fixed and cannot change during iterations. One might argue that
it would reinforce mistakes when labeled data are noisy. This is true, and label
propagation assumes noise free labels. Under this assumption it is important to
be able to insist on labels, without being carried away by unlabeled data distri-
bution. In practice since labeled dataset is small, it might be relatively easy to

<Y >= (38)
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make sure it is correctly labeled. An interesting open question is when we are
not confident about a label, whether we can clamp it to some soft distribution
in Y7, to express the uncertainty.

In related work, we have also attempted to use Boltzmann machine learning
on the Markov random field F to learn from labeled and unlabeled data, opti-
mizing the length scale parameters using the likelihood criterion on the labeled
points [ZG02].

6 Summary and Discussion

We proposed a label propagation algorithm to learn from both labeled and
unlabeled data. Labels were propagated with a combination of random walk
and clamping. We showed the solution to the process, and its connection to
other methods. We also showed how to learn the parameters. As with various
semi-supervised learning algorithm of its kind, label propagation works only if
the structure of the data distribution, revealed by abundant unlabeled data,
fits the classification goal. In the future we will investigate better ways to
rebalance class proportions, applications of the entropy minimization criterion
to learn propagation parameters from real datasets, and possible connections to
the diffusion kernel [KL02].
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Figure 3: The digits dataset. (a) shows 100 randomly sampled images. (b)—(f)
show the error rates of different post processing methods. Each point is an
average of 20 random trials. The errarybars are +1 standard deviation. LBo
is the best if we have oracle class proportion knowledge, otherwise CNe is the

best.
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Figure 4: The Bridge dataset. (d)—(h) are the results of label propagation with
different o values before smoothing T'. (i) shows the entropy vs. o curve for
label propagation before and after smoothing T with different e values.

16



TQ
‘mTA
Tz
‘mTA

dim 1 dim 3

im dim 3

(a) data, dim 1,2 (b) data, dim 3,4 (c) result, dim 1,2 (d) result, dim 3,4

Figure 5: The Ball dataset. Dimensions 3,4 are deemed irrelevant because of
the lack of structure in unlabeled data. The result is at optimal ¢’s learned
from gradient descent.
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Figure 6: The Ball2 dataset. There is structure in both dimensions 1,2 and 3,4.
But the four labeled points indicate the irrelevance of dimensions 3,4.
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Figure 7: Label propagation on a symmetric dataset. The middle band splits
in label, but with close to uniform probabilities. A graph mincut algorithm will
generate either all 4+ or all o labels for the middle band.
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