Doc no: N2235=07-0095

Date: 2007-04-17

Reply-To: Gabriel Dos Reis
gdr@cs.tamu.edu

Generalized Constant Expressions — Revision 5

Gabriel Dos Reis Bjarne Stroustrup Jens Maurer

Abstract

This paper generalizes the notion of constant expressions to include constant-
expression functions and user-defined literals. In addition, some floating-
point constant expressions are allowed. The goal is to improve support for
generic programming, systems programming, and library building, and to in-
crease C99 compatibility. The proposal allows us to remove long-standing
embarassments from some Standard Library components (notably <limits>).

1 Introduction

This paper generalizes the notion of constant expressions to include calls to “suf-
ficiently simple” functions (constexpr functions) and objects of user-defined types
constructed from “sufficiently simple” constructors (constexpr constructors.) The
proposal aims to

e improve type-safety and portability for code requiring compile time evalua-
tion;
e improve support for systems programming, library building, generic pro-

gramming; and

o simplify the language definition in the area of constant expression to match
existing practice,

e remove embarassments from existing Standard Library components.

Any enhancement of the notion of constant expressions has to carefully con-
sider the entanglement of many different notions, but strongly related. Indeed, the
notion of constant expression appears in different contexts:

1. The general notion of compile-time evaluation of expressions, e.g. array
bounds, expressions in case-statements, initialization of enumerators in enu-
meration definition.

N2235=07-0095

2. Specification of values for non-type template-parameters.
3. Static initialization of objects with static storage.

The Standard is carefully written so that it does not require information about
template arguments that are available only at link-time, too late to be useful. Sim-
ilarly, we do not propose to change the already complex and subtle distinction
between “static initialization” and “dynamic initialization”. However we strieve
for more uniform and consistency among related C++ language features and com-
patibility.

2 Acknowledgment

The suggestions in this proposal directly build on previous work — in particular
Generalized Constant Expressions [DRS06, DRO3] and Literals for user-defined
types [Str03] — and discussions at committee meetings — in particular in Kona
(October 2003), Redmond (October 2004), Mont Tremblant (October 2005), Berlin
(April 2006), and Portland (October 2006).

3 Problems

Most of the problems addressed by this proposal have been discussed in previous
papers, especially the initial proposal for Generalized Constant Expressions [DRO3],
the proposal for Literals for user-defined types [Str03], Generalized initializer
lists [DRSO3], Initializer lists [SDR0O5]. What follows is a brief summary.

3.1 Embarassments with numeric limit constants

The standard numeric_limits class template provides uniform syntax to access
functionality of <1imits.h>, but fails to deliver constant expressions. For exam-
ple, the expression numeric_limits<int>::max () while functionally equivalent
to the macro INT_MAX, is not an integral constant. That is due to an unnecessarily
restrictive notion of constant expressions. The result is that macros are preferred in
situations where values need to be known at compile time.

The main thrust of this proposal suggests to allow explicitly identified simple
functions to be used as part of constant expressions.

3.2 Convoluted bitmask types

The Standard Library [ISO03, §17.3.2.1.2] uses the notion of bitmask type de-
scribed as follows:

1 Several types defined in clause 27 are bitmask types. Each bitmask
type can be implemented as an enumerated type that overloads cer-
tain operators, as an integer type, or as a bitset (23.3.5).

Dos Reis & Stroustrup 2

N2235=07-0095

2 The bitmask type bitmask can be written:

enum bitmask {
VO =1<<0, VI =1<x<1,V2=1<x<2,V3=1K«x<3,

ki
static const bitmask CO0(VO0)
static const bitmask C1(V1)
static const bitmask C2(V2);
(V3)

7
i
static const bitmask C3 ;

bitmask operator&(bitmask X, bitmask Y)
// For exposition only.
// int_type is an integral type capable of
// representing all values of bitmask
{ return static_cast<bitmask> (
static_cast<int_type> (X) &
static_cast<int_type>(Y)); }

/!

3 Here, the names C0, C1, etc. represent bitmask elements for this partic-
ular bitmask type. All such elements have distinct values such that,
for any pair Ci and Cj, Ci&Ci is nonzero and CisCj is zero.

None of the implementation techniques suggested in the C++ standard text is
really satisfactory. We are forced to choose between type safety (“elegance”) and
compile-time evaluation (“efficiency”). For example, if a bitmask type is imple-
mented by an enumeration type with overloads of the appropriate operators, then
the masking operators no longer deliver constant expressions when the inputs are
constant expressions. That is a real efficiency problem for some system programs.
On the other hand, if a bitmask is implemented by an integer type or we rely on
the implicit conversion of enumerations to int, then the masking operators come
for free and are efficient; but the operators do not provide any type guarantees.

This proposal allow efficient implementation of bitmask type, and without loss
of type information.

3.3 Brittle enumerated types

The Standard Library [ISO03, §17.3.2.1.1] uses the notion of enumerated type
defined as follows:

1 Several types defined in clause 27 are enumerated types. Each enu-

merated type may be implemented as an enumeration or as a syn-

onym for an enumeration!>?),

[with footnote 150]

Such as an integer type, with constant integer values (3.9.1).

2 The enumerated type enumerated can be written:

Dos Reis & Stroustrup 3

N2235=07-0095

enum enumerated { V0, V1, V2, V3, ... };

static const enumerated CO
static const enumerated Cl
static const enumerated C2
static const enumerated C3

3 Here, the names C0, C1, etc. represent enumerated elements for this
particular enumerated type. All such elements have distinct values.

This definition does not prevent user errors, such as accidental use of implicit
conversions and operations on the underlying integer type (operator|, operators,
etc.) Our proposal for literals of user-defined types, combined with constant-
expression functions, provide an alternative.

3.4 Unexpected dynamic initialization

In current C++, a variable or static data member declared const can be used in
an integral constant expression, provided it is of integral type and initialized with
constant expression. Similarly, global variables can be statically initialized with
constant expressions. However, it is possible to be surprised by expressions that
(to someone) “look const” but are not. For example in

struct S {
static const int size;

i

const int limit = 2 * S::size; // dynamic initialization
const int S::size = 256;
const int z = numeric_limits<int>::max(); // dynamic initialization

Here, S::size is indeed initialized with a constant expression, but that initializa-
tion comes “too late” to make S: : size a constant expression; consequently 1imit
may be dynamically initialized. The issue here is that there is no simple, sys-
tematic, and reliable way of requesting that a datum be initialized before its use
and the initializer must be a constant expression. That problem is addressed using
constant-expression values (§4.2).

3.5 Complex rules for simple things

The focus of this proposal is to address the issues mentioned in preceding sections.
However, discussions in the Core Working Group at the Berlin meeting (April
2006) concluded that the current rules for integral constant expressions are too
complicated, and source of several Defect Reports. Consequently, a “cleanup”, i.e.
adoption of simpler, more general rules is suggested.

Dos Reis & Stroustrup 4

N2235=07-0095

4 Suggestions for C++0x

The generalization we propose are articulated in three steps: First, we introduce
constant-expression functions and use those to generalize constant expressions.
Second, we introduce “literals for user-defined type” based on the notion of constant-
expression constructors. Finally, we describe floating-point constant expressions.

4.1 Constant-expression functions

A function is a constant-expression function if
e it returns a value (i.e., has non-void return type);

e its body consists of a single statement of the form

return expr;

where after substitution of constant expression for the function parameters
in expr, the resulting expression is a constant expression (possibly involving
calls of previously defined constant expression functions); and

e it is declared with the keyword constexpr.

This is an elaborate way of saying that a constant-expression function is a
named constant expression with parameters, and has been explicitly identified as
such. Expressions having the same properties as expr above are called potential
constant expressions. A constant-expression function cannot be called before it is
defined.

A constant-expression function may be called with non-constant expressions,
in that case there is no requirement that the resulting value be evaluated at compile-
time. Here are some examples

constexpr int square (int x)
{ return x * x; } // fine

constexpr long long_max()

{ return 2147483647; } // fine

constexpr int abs(int x)

{ return x < 0 ? -x : x; } // fine

constexpr void f(int x) // error: return type is void
{/* ... %/}

constexpr int next (int x)

{ return ++x; } // error: use of increment

constexpr int g(int n) // error: body not just ‘‘return expr’’

{
int r = n;
while (--n > 1) r *= n;

Dos Reis & Stroustrup 5

N2235=07-0095

return r;

}

constexpr int twice (int x);
enum { bufsz = twice(256) }; // error: twice() isn’t (yet) defined

constexpr int fac(int x)
{ return x > 2 ? x * fac(x - 1) : 1; } // error: fac() not defined
// before use

template<typename T>
constexpr int bytesize(T t)

{ return sizeof (t); } // fine
float array[square(9)]; // OK -- not C99 VLA
enum { Max = long_max() }; // OK
bitset<abs (-87)> s; // OK
extern const int medium;
const int high = square (medium); // OK -- dynamic initialization
char buf [bytesize (0)]; // OK -- not C99 VLA

Here “fine” indicates that the function body is simple enough to be evaluated
as a constant expression given constant expression arguments.

Note that constant-expression functions provide what we usually expect from
functional macros combined with usual pass-by-value evaluation (e.g. the argu-
ment to square is used twice, but evaluated only once) and type safety. The
requirement that a constant-expression function can only call previously defined
constant-expression functions ensures that we don’t get into any problems related
to recursion. Experimental implementations of calls to functions in constant ex-
pressions in C++ have long history going back to early versions of CFront.

We (still) prohibit recursion in all its form in constant expressions. That is not
strictly necessary because an implementation limit on recursion depth in constant
expression evaluation would save us from the possibility of the compiler recurs-
ing forever. However, until we see a convincing use case for recursion, we don’t
propose to allow it.

A constant expression function must be defined before its first use. For exam-
ple:

struct S {
constexpr int twice();
constexpr int t();
private:
static constexpr int val; // constexpr variable

i

constexpr int S::val = 7;
)

constexpr int S::twice() { return val + val; }

constexpr S s { }i
int x1 = s.twice(); // ok
int x2 = s.t(); // error: S::t() not defined

Dos Reis & Stroustrup 6

N2235=07-0095

constexpr int ff(); // ok

constexpr int gg(); // ok

int x3 = ff(); // error: ff() not defined
constexpr int ff() { return 1; } // too late
constexpr int gg() { return 2; }

int x4 = gg(); // ok

4.2 Constant-expression data

A constant-expression value is a variable or data member declared with the constexpr
specifier. A constant-expression value must be initialized with a constant expres-
sion or an rvalue constructed by a constant expression constructor with constant
expression arguments. For example:

const double mass = 9.8;

constexpr double energy = mass * square(56.6); // OK

extern const int side;

constexpr int area = square(side); // error: square(side) is not a
// constant expression

A variable or data member declared with constexpr behaves as if it was de-
clared with const, except that it requires initialization before use and its initializer
must be a constant-expression. Therefore a constexpr variable can always be
used as part of a constant expression.

As for other const variables, storage need not be allocated for a constant-
expression datum, unless its address is taken. For example:

constexpr double x = 9484.748;
const double* p = &x; // the &x forces x into memory

4.3 Constant-expression constructors

The notion of constant-expression data generalizes from data with built-in types
to data with user-defined types. To construct constant-expression values of user-
defined type, one needs the notion of constant-expression constructor: a construc-
tor

e declared with the constexpr specifier;

e with member-initializer part involving only potential constant-expressions;
and

e and the body of which is empty.

A constant-expression constructor is just like a constant-expression function,
except that since constructors do not return values their body must be empty and

Dos Reis & Stroustrup 7

N2235=07-0095

the constant expression evaluation happens in member initializations which must
deliver constants if the inputs are constants. An object of user-defined type con-
structed with a constant-expression constructor and constant expression arguments
is called a user-defined literal. For example:

struct complex {
constexpr complex (double r, double i) : re(r), im(i) { }

constexpr double real() { return re; }

constexpr double imag() { return im; }
private:
double re;
double im;
i
constexpr complex I(0, 1); // OK -- literal complex

For a constant-expression constructor:

o the definition is checked for consistency with potential constant expression
assumptions. It is an error if the definition does not meet those constraints.
A constant-expression constructor is inline;

e the use with constant expression arguments is guaranteed to yield a user-
defined literal, e.g. an expression with user-defined type that is evaluated at
compile time.

A constant-expression constructor may be invoked with non-constant expres-
sion arguments — the resulting initialization may then be dynamic. This implies
that there is no need to have two versions for constructors that would do the same
thing, e.g. one constructor that accepts only constant expression arguments and
one that may accept non-constant expression arguments. For example:

double x = 1.0;

constexpr complex unit(x, 0); // error: x non-constant

const complex one(x, 0); // OK, ‘‘ordinary const’’ -- dynamic
// initialization

constexpr double xx = I.real(); // OK
complex z (2, 4); // OK —-- ordinary variable

When the initializer for an ordinary variable (i.e. not a constexpr) happens
to be a constant, the compiler can choose to do dynamic or static initialization (as
ever).

Declaring a constructor constexpr will help compilers to identify static ini-
tialization and perform appropriate optimizations (like putting literals in read-only
memory.) Note that since “ROM?” isn’t a concept of the C++ Standard and what to
put into ROM is often a quite subtle design decision, this proposal simply allows
the programmer to indicate what might be put into ROM (constant-expression data)

Dos Reis & Stroustrup 8

N2235=07-0095

rather than trying to specify what actually goes into ROM in a particular implemen-
tation.

Using the value of an object declared constexpr requires the compiler to “re-
member” its value for use in constant expressions (later in the same translation
unit), like is the case for enumerators. For example:

constexpr complex v[] = {

complex (0, 0), complex(l, 1), complex(2, 2)
bi
constexpr double x = v[2].real(); // OK

Clearly, a compiler might have to “remember” a lot of values, but then memories
on systems running compilers tend to be correspondingly large these days. Also,
this kind of “compile-time data bloat” can occur only as the result of explicit use
of constexpr for large arrays.

Note also that constexpr values are those that the compiler can evaluate at
translation time. In particular, given

constexpr int i = 98;

the following declaration is ill-formed

const int p = (int) &i; // ERROR

because the initializer is not an integral constant expression.

4.3.1 Destructor

Can an user-defined literal be destroyed? Yes. The destructor needs to be trivial.
The reason is that a constant-expression is intended to be evaluated by the com-
piler at translation time just like any other literal of built-in type; in particular no
observable side-effect is permitted. Since destructors do not yield values, the only
effect they may have is to modify the state of the (executing) environment. Con-
sequently, to preserve behaviour, we require that the destructor for a user-defined
literal be trivial.

4.3.2 Copy-constructor

When a user-defined literal is copied, e.g. arguments passing in function call, using
a copy constructor and the copy constructor is trivial, then the copy is also a user-
defined literal. For example:

constexpr complex operator+(complex z, complex w)

{

return complex(z.real() + w.real(), z.imag() + w.imag()); // fine

}
constexpr complex I2 =1 + I; // OK
struct resource {

int id;

Dos Reis & Stroustrup 9

N2235=07-0095

constexpr resource (int i) : id(i) { } // fine
resource (const resource& r) : id(r.id)
{
cout << id << " copied" << endl;
}
ki

constexpr resource f(resource d)
{ return d; } // error: copy-constructor not trivial

constexpr resource d = f(9); // error: f(9) not constant expression

4.4 Floating-point constant expressions

Traditionally, evaluation of floating-point constant expression at compile-time is a
thorny issue. For uniformity and generality, we suggest to allow constant-expression
data of floating point types, initialized with any floating-point constant expressions.
That will also increase compatibility with C99 [ISO99, §6.6] which allows

[#5] An expression that evaluates to a constant is required in several
contexts. If a floating expression is evaluated in the translation envi-
ronment, the arithmetic precision and range shall be at least as great
as if the expression were being evaluated in the execution environ-
ment.

For example, in

constexpr complex w = I + complex (3.5, 8.7); // OK

the variable w is as if initialized with complex (3.5, 9.7).

4.5 Changes to the C++ standard

The original proposal [DR03] for generalizing constant expressions did not intro-
duce a new keyword to distinguish constant-expression functions from others. That
proposal relied on the compiler recognizing such functions being simple enough for
use in constant expression. However, during discussions in the Evolution Group
at the Kona meeting (October 2003), the consensus was that we needed syntactic
marker. Given that (our proposed constexpr), a programmer can state that a
function is intended to be used in a constant expression and the compiler can diag-
nose mistakes. We considered this in conjunction with the user-defined literal and
initializer-list proposals [Str03, SDRO5]. At the Mont Tremblant meeting (October
2005), the Evolution Group agreed on the new declaration specifier constexpr,
for defining constant-expression functions and constants of user-defined types.

The remaining subsections provide necessary wordings to implement the de-
sign outlined in the previous sections.

4.5.1 Syntax
New keyword Add the new keyword constexpr to “Table 3” [ISO03, §2.11].

Dos Reis & Stroustrup 10

N2235=07-0095

New specifier The keyword constexpr is a declaration specifier; modify the
grammar in [ISO03, §7.1] as follows:

1 The specifiers that can be used in a declaration are

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef
constexpr

We do not propose to make constexpr a storage-class-specifier because it can be
combined with either static or extern or register, much like const. We do
not propose to make constexpr part of type-specifier as a cv-qualifier because it
is not a new distinct type qualifier, and we don’t see a need to distinguish between,
say, a type for literal int, and a separate type for non-literal int. That helps keep
the type rules as simple as possible. Finally, we do not propose to make constexpr
a function-specifier because it can be used to define both functions and variables.
We don’t propose to make constexpr applicable to function arguments because it
would be meaningless for non-inline functions (the argument would be a constant,
but the function wouldn’t know which) and because it would lead to complications
of the overloading rules (can I overload on constexpr-ness? — no).

4.5.2 Semantics

New section Add the following section for the description of constexpr seman-
tics:

7.1.6 The constexpr specifier [decl.constexpr]

1 The constexpr specifier can be applied only to the definition of an ob-
ject, function, or function template, or the declaration of a static data
member of literal type (3.9). [Note: Function parameters cannot be
declared constexpr.] [Example:

constexpr int square(int x) // OK

{

return x * x;

}

constexpr int bufsz = 1024; // OK

constexpr struct pixel { // error: pixel is a type
int x;
int y;

bi

int next (constexpr int x) // error
{ return x + 1; }

Dos Reis & Stroustrup 11

N2235=07-0095

extern constexpr int memsz;

—end example]

// error: not a definition

2 A constexpr specifier used in a function declaration declares that func-
tion to be a constexpr function. Similarly, a constexpr specifier used in
a constructor declaration declares that constructor to be a constexpr
constructor. Constexpr functions and constexpr constructors are im-
plicitly inline (7.1.2). A constexpr function shall not be virtual (10.3).

3 The definition of a constexpr function shall satisfy the following con-

straints:

— its return type shall be a literal type; and

— its parameter types shall be literal types; and

— its function-body shall be a compound-statement of the form

{ return expression;

}

where expression is a potential constant expression (5.19); and

— every implicit conversion used in converting expression to the func-
tion return type (8.5) shall be one of those allowed in a constant

expression (5.19).

[Example:

constexpr int square(int x)

{ return x * x; }

constexpr long long
{ return 2147483647

constexpr int abs(i

{ return x < 0 ? -x :

constexpr void f(in

{/x o0 %)

constexpr int prev(
{ return --x; }

constexpr int g(int x, int n)

{
int r = 1;
while (--n > 0)
return r;

}

—end example]

_max ()

.

nt x)

t x)

int x)

r *= x;

x; }

//

//

//

/!

//
//

OK

OK

OK

error:

error:

error:

return type is void

use of decrement

body not just ‘‘return expr’’

4 The definition of a constexpr constructor shall satisfy the following

constraints:

— its function-body is an empty compound-statement; and

— every non-static data member or base class sub-object is initial-

ized (12.6.2); and

Dos Reis & Stroustrup

12

N2235=07-0095

— every constructor involved in initializing non-static data member
and base class sub-objects is a constexpr constructor invoked
with potential constant expression arguments, if any.

A trivial copy constructor is also considered a constexpr constructor.
[Example:

struct Length {

explicit constexpr Length(int i = 0) : val(i) { }
private:

int val;

i
—end example]

5 If the instantiated template specialization of a constexpr function tem-
plate would fail to satisfy the requirements for a constexpr function,
the constexpr specifier is ignored and the specialization is not a cons-
texpr function.

6 A constexpr specifier used in a non-static member function defini-
tion declares that member function to be const (9.3.1). [Note: The
constexpr specifier has no other effect on the function type.] The class
of which that function is a member shall be a literal type (3.9). [Exam-
ple:

class debug_flag {
public:
explicit debug_flag(bool);
constexpr bool is_on(); // error: debug_flag not
// literal type
private:
bool flag;
i

constexpr int bar(int x, int y) // OK

{ return x + y + x*y; }

//

int bar(int x, int y) // error: redefinition of bar
{ return x * 2 + 3 * y; }

—end example]

7 A constexpr specifier used in an object declaration declares it as const.
The object shall be initialized, and every expression that appears in
the initializer (8.5) shall be a constant expression. Every implicit con-
version used in converting the initializer expressions shall be one of
those allowed in a constant expression (5.19). [Example:

struct pixel {
int x, y;
bi
constexpr pixel ur = { 1294, 1024 }; // OK
constexpr prixel origin; // error: initializer missing

—end example]

Dos Reis & Stroustrup 13

N2235=07-0095

Paragraph modification. Modify paragraph §5.3.4/7:
[Example: if+=is—a—variable-oftype—int given the definition int n =

42, then new float[n][5] is well-formed (because n is the expression of a
direct-new-declarator), but new float[5] [n] is ill-formed (because n is not
a eonstant-expression constant expression). If n is negative, the effect of
new float[n][5] is undefined. —end example]

Modity §6.4.2/1

[...] Any statement within the switch statement can be labeled with
one of more case lables as follows:

case constant-expression :

where the constant-expression shall be an integral eonstant-expression con-
stant expression (expr.const) is implicitly converted to the promoted
type of the switch condition.

Modify §7.2/2:

An enumerator-definition with = gives the associated enumerator the value
indicated by the constant-expression. The constant-expression shall be of

integral-or-enumerationtype an integral constant expression. |[...]
Modify §9.4.2/2:

If a static data member is of
literal type, its declaration in the class definition can specify a constant-
initializer which shall be an—integral a constant expression (5.19). In
that case, the member can appear in integral constant expressions.
The member shall still be define

Modify §9.6/1

[...] The constant-expression shall be an integral eenstant-expression con-
stant expression with a value greater than or equal to zero. The
constant-expression value of the integral constant expression may be
larger than the number of bits in the object representation (basic.types)
of the bit-field’s type; in such cases the extra bits are used as padding
bits and do not participate in the value representation (expr.types) of
the bit-field. [...]

Modify §9.6/2

[...] Only when declaring an unnamed bit-field may the value of the
constant-expression be a valae equal to zero.

Modify §12.1

7 [...] The implicitly-defined default constructor performs the set of ini-
tializations of the class that would be performed by a user-written de-
fault constructor for that class with an empty mem-initializer-list (12.6.2)
and an empty function body. If that user-written default constructor
would be ill-formed, the program is ill-formed. If that user-written
default constructor would satisfy the requirements of a constexpr
constructor (7.1.6), the implicitly-defined default constructor is
constexpr. Before the implicitly-declared default constructor for a
class is implicitly defined, all the implicitly-declared default construc-
tors for its base classes and its non-static data members shall have
been implicitly defined. [...]

Dos Reis & Stroustrup

14

N2235=07-0095

Modify §14.3.2/1

[...] an integral eonstant-expression constant expression of integral-or
enumeration-type.

New paragraph Insert after §3.9/10:

11 A type is a literal type if

— it is a scalar type; or

— it is a class type (9) with
e trivial copy constructor,
e trivial destructor,

¢ at least one constexpr constructor other than the copy con-
structor,

e no virtual base classes, and
¢ all non-static data members and base classes of literal types;
or

— it is an array of literal type.

Paragraph modification Modify paragraph §3.6.2/1 as follows:

1 Objects with static storage duration (3.7.1) shall be zero-initialized
(8.5) before any other initialization takes place. Zero-initialization and
initialization with a constant expression are collectively called static
initialization; all other initialization is dynamic initialization. Objects
of POD or literal types (3.9) with static storage duration initialized
with constant expressions (5.19) shall be initialized before dynamic
initialization takes place. Objects with static storage duration defined
in namespace scope in the same translation unit and dynamically
initialized shall be initialized in the order in which their definition
appears in the translation unit. [Note: 8.5.1 describes the order in
which aggregate members are initialized. The initialization of local
static objects is described in 6.7.]

Notice that this proposal does not directly change what is “static initialization”
versus “dynamic initialization”. We consider the topic to be alrewady subtle and
complex. We have extended the set of types for which the notion of static initial-
ization applies by including literal types in that set. In particular given

struct B {

constexpr B(int i) : val(i) { }
int val;

bi
the definition of the namespace-scope object

B b(3);

is subject to static initialization, and not dynamic initialization.

Dos Reis & Stroustrup 15

N2235=07-0095

Paragraph modification Modify paragraph §9.2/4 as follows:

4 A member-declarator can contain a constant-initializer only if it declares

a static member (9.4) of const integral-er—censt—enumeration literal
types, see 9.4.2.

4.5.3 Constant expressions revised

Paragraph modification. Replace section 5.19 with

1 Certain contexts require expressions that satisfy additional require-
ments as detailed in this sub-clause. Such expressions are called
constant expressions. [Note: Those expressions can be evaluated dur-
ing translation.]

constant-expression:
conditional-expression

2 A conditional-expression is a constant expression unless it involves one
of the following as a potentially evaluated subexpression (3.2), but
subexpressions of logical AND (5.14), logical OR (5.15), and condi-
tional (5.16) operations that are not evaluated are not considered
[Note: an overloaded operator invokes a function]:

— this (5.1) unless it appears as the postfix-expression in a class
member access expression, including the result of the implicit
transformation in the body of a non-static member function (9.3.1);

— an invocation of a function other than a constexpr function or
a constexpr constructor [Note: overload resolution (13.3) is ap-
plied as usual];

— an lvalue-to-rvalue conversion (4.1) unless it is applied

e to an lvalue of integral type that refers to a non-volatile
const variable or static data member initialized with con-
stant expressions, or

e to an lvalue of literal type that refers to a non-volatile ob-
ject defined with constexpr, or that refers to a sub-object
thereof;

— an id-expression that refers to a variable or data member of refer-
ence type;

— a type conversion from a floating-point type to an integral type
(4.9) unless the conversion is directly applied to a floating-point
literal;

— a dynamic cast (5.2.7);

— a type conversion from a pointer or pointer-to-member type to a
literal type [Note: a user-defined conversion invokes a function];

— a pseudo-destructor call (5.2.4);

— aclass member access (5.2.5) unless its postfix-expression is of POD
or literal type or of pointer to POD or literal type;

— increment (5.2.6) or decrement operations (5.3.2);

— atypeid expression (5.2.8) whose operand is of polymorphic class
type;
— a new-expression (5.3.4);

Dos Reis & Stroustrup

16

N2235=07-0095

— a delete-expression (5.3.5);
— a subtraction (5.7) where both operands are pointers;

— arelational (5.9) or equality operator (5.10) where at least one of
the operands is a pointer;

— an assignment or a compound assignment (5.17); or

— a throw-expression (15.1).

3 A constant expression is an integral constant expression if it is of in-
tegral or enumeration type. [Note: Such expressions may be used
as array bounds (8.3.4, 5.3.4), as case expressions (6.4.2), as bit-
field lengths (9.6), as enumerator initializers (7.2), as static member
initializers (9.4.2), and as integral or enumeration non-type template
arguments (14.3).]

4 If an expression of literal class type is used in a context where an
integral constant expression is required, then that class type shall
have a single conversion function to an integral or enumeration type
and that conversion function shall be constexpr. [Example:

struct A {
constexpr A(int 1) : val(i) { }
constexpr operator int() { return val; }
constexpr operator long() { return 43; }
private:
int val;

i
template<int> struct X { };

constexpr A a = 42;
X<a> x; // OK: unique conversion to int
int arylal; // error: ambiguous conversion

—end example]

5 An expression is a potential constant expression if it is a constant
expression when all occurrences of function parameters are replaced
by arbitrary constant expressions of the appropriate type.

Expressions of user-defined literal types are allowed in contexts where an expres-
sion of integral type is required, provided there is a conversion function, unique-
ment identified by overload resolution. This is coherent with the current practice:

struct 72 {

operator int () const { return 42; }

operator unsigned char() const { return 43; }
i
const Z z = { };
const int n = z; // OK: n is initialized with 42
const long m = z; // error: ambiguous conversion

enum E { vl = 2, v2 = 10 };
E operator+(E, E);

float array([vl + v2]; // error: v1+v2 not constant

Dos Reis & Stroustrup 17

N2235=07-0095

We feel that there is an inconsistency in the language design with respect to the
way copy-initialization and direct-initialization are handled for built-in types. That
is, a class type T, the objects t1 and t2

are potentially initialized differently, whereas the meanings are the same if T is a
built-in type. This is just a note; we don’t propose any change in that area.

4.54 Other changes

Paragraph modification Modify paragraph §3.2/2 as follows:

2 An expression is unevaluated if it is the operand of the sizeof operator
(5.3.3), or if it is the operand of the typeid operator and it is not an
Ivalue of a polymorphic class type (5.2.8). All other expressions are
potentially evaluated. An object or non-overloaded function whose
name appears as a potentially-evaluated expression is used unless it
is an object that satisfies the requirements for appearing in an-integral
a constant expression (see 5.19), and the lvalue-to-rvalue conversion
(4.1) is immediately applied.

Paragraph modification Modify paragraph §3.2/2 as follows:

5 ... except that a name to a const object with internal or no linkage
if the object has the same integral-er-enumeration literal type in all
definitions of D, and the object is initialized with a constant expression
(5.19),

Paragraph modification. Change §3.6.2/1 as follows

[...]1 A reference with static storage duration and an object of POD
or literal type with static storage duration can be initialized with a
constant expression (5.19); this is called constant initialization.

Paragraph modification Modify paragraph §6.7/4 as follows:

4 Alocal object of POD or literal type (3.9) with static storage dura-
tion initialized with a constant expression is initialized before its block
is first entered.

Paragraph modification Modify paragraph §9/4 as follows:

4 1If a static data member is of eenstintegral-erconst—enumeration lit-

eral type, its declaration in the class definition can specify constexpr
and its initializer whieh shall be-an-integral involve only constant ex-
pressions (5.19). In that case the member can appear in integral con-
stant expressions. The member shall still be defined in a namespace
scope if it is used in the program and the namespace scope definition
shall not contain an initializer.

Dos Reis & Stroustrup 18

N2235=07-0095

Paragraph modification Modify paragraph §14.6.2.3/1 as follows:

2 An identifier is value-dependent if it is:

— a name declared with a dependent type,

— the name of a non-type template parameter,

— a constant with integral-er-enumeration literal type and is ini-

tialized with an expression that is value-dependent.

Extend paragraph §14.7.2/1:

[...] An explicit instantiation of a function template shall not use
the inline or constexpr specifiers.

5 Related proposals

5.1 Standard Library changes

We plan to propose changes to the standard library to take advantage of constexpr.
Obvious candidates are numeric_limits, bitmask, and enumerated as described
in§3 and initializer list.

5.2 Non-type template parameter

The suggestion of extending non-type template parameter type to literal types will
be subject of an independent proposal.

5.3 Generalizing PODs

There is a suggestion to extend the notion of POD. That suggestion is independent,
in scope, of this constant expression proposal. The definition of “literal type” as
suggested in this paper may be a starting point for that proposal.

6 Acknowledgments

Thanks to the committee members who provided feedback, suggestions for im-
provement, as expressed in face-to-face meetings or on the standard reflectors.

References

[DRO3] Gabriel Dos Reis. Generalized Constant Expressions. Technical
Report N1521=03-0104, ISO/IEC JTC1/SC22/WG21, http://www.
open-std.org/JTC1/SC22/WG21/docs/papers/2003/n1521.pdf,
September 2003.

Dos Reis & Stroustrup 19

N2235=07-0095

[DRSO03] Gabriel Dos Reis and Bjarne Stroustrup. Generalized initializer
list. Technical Report N1509=03-0092, ISO/IEC JTC1/SC22/WG21,
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2003/
n1509.pdf, September 2003.

[DRS06] Gabriel Dos Reis and Bjarne Stroustrup. Generalized Constant Ex-
pressions — Revision 2. Technical Report N1972=06-0042, ISO/IEC
SC22/JTC1/WG21, February 2006. Supersedes [DRO3].

[ISO99] International Organization for Standards. International Standard
ISO/IEC 9899. Programming Languages — C, 1999.

[ISO03] International Organization for Standards. International Standard
ISO/IEC 14882. Programming Languages — C++, 2nd edition, 2003.

[SDROS] Bjarne Stroustrup and Gabriel Dos Reis. Initializer lists. Technical
Report N1919=05-0179, ISO/IEC JTC1/SC22/WG21, http://www.
open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1919. pdf,
December 2005.

[StrO3] Bjarne Stroustrup. Literals for user-defined types. Technical Re-
port N1511=03-0094, ISO/IEC JTC1/SC22/WG21, http://www.
open-std.org/JTC1/SC22/WG21/docs/papers/2003/n1511.pdf,
September 2003.

Dos Reis & Stroustrup 20

