《------往期经典推荐------》
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
《------正文------》
1.引言
本文主要详细介绍如何在YOLO11的主干网络部分或者neck颈部添加注意力机制,以CAA上下文锚点注意力机制
机制为例。本文修改方法同样适用于其他注意力机制的添加和修改,步骤类似。
2.CAA注意力介绍
关于CAA上下文锚点注意力机制
的源码与详细介绍
可以参考之前分享的博客文章《【即插即用涨点模块】CAA上下文锚点注意力机制:有效捕捉全局信息,助力高效涨点【附源码+注释】》,此处不再赘述。
3.源码修改步骤
在YOLO11源码中添加并修改相应的模块内容,用于后续网络结构配置文件的修改,详细步骤如下:
1. 新建文件
在YOLO11源码的ultralytics/nn
的目录下新建Attentions
文件用于存放所有的注意力机制源码
,然后在Attentions
目录下新建CAA.py
文件,并将CAA注意力
源码【见第2节】复制到CAA.py
文件中。
在ultralytics/nn/Attentions
目录下新建__init__.py
文件,并导入CAA模块。如下:
2.修改task.py文件
首先在ultralytics/nn/tasks.py
中导入已经创建好的注意力机制模块。
然后,在ultralytics/nn/tasks.py
中搜索parse_model
网络结构解析函数。
在parse_model
函数中的加上一个条件分支,用于解析我们新建的模块内容
,代码如下:
elif m in {CAA}:
c2 = ch[f]
args = [c2, *args]
到此,所有的源码修改部分到此结束。下面我们就可以在我们的网络结构中,进行相应的模块配置。
4.修改网络配置文件
YOLO11网络结构中可以添加注意力机制的地方很多,比如主干、颈部、头部
或者C3k2内部
等地方,都可以添加,此处介绍2种添加方式。
1. 在主干添加注意力
我们在ultralytics/cfg/models/11
下新建一个网络结构配置文件yolo11-CAA1.yaml
。然后写入如下内容:
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 181 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 181 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 231 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 357 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 357 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, CAA, []] # 9
- [-1, 1, SPPF, [1024, 5]] # 10
- [-1, 2, C2PSA, [1024]] # 11
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 14
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 17 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 14], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 20 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 11], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 23 (P5/32-large)
- [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)
修改前后网络结构对比如下【注意层数的修改】
:
2. 在颈部添加注意力
我们在ultralytics/cfg/models/11
下新建一个网络结构配置文件yolo11-CAA2.yaml
。然后写入如下内容:
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 181 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 181 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 231 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 357 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 357 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- [-1, 1, CAA, []] #17
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 20 (P4/16-medium)
- [-1, 1, CAA, []] #21
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 24 (P5/32-large)
- [-1, 1, CAA, []] #25
- [[17, 21, 25], 1, Detect, [nc]] # Detect(P3, P4, P5)
5.模型训练
使用修改后的模型网络结构进行模型训练,只需修改一下网络结构配置文件路径model_yaml_path
即可。
#coding:utf-8
from ultralytics import YOLO
import matplotlib
matplotlib.use('TkAgg')
# 模型配置文件
model_yaml_path = "ultralytics/cfg/models/11/yolo11-CAA1.yaml"
# model_yaml_path = "ultralytics/cfg/models/11/yolo11-CAA2.yaml"
#数据集配置文件
data_yaml_path = 'datasets/GrapeData/data.yaml'
if __name__ == '__main__':
#加载预训练模型
model = YOLO(model_yaml_path)
#训练模型
results = model.train(data=data_yaml_path,
epochs=150, # 训练轮数
batch=4, # batch大小
name='train_v11', # 保存结果的文件夹名称
optimizer='SGD') # 优化器
主干添加注意力运行后网络结构打印如下:
颈部添加注意力运行后网络结构打印如下:
可以发现,网络结构已经按照我们的修改方式正常执行。
6.免费获取源码
为了小伙伴们能够,更好的学习实践,本文已将所有代码、示例数据集等相关内容打包上传,供小伙伴们学习。获取方式如下:
后续还会更新更多关于网络结构修改相关内容,感谢点赞关注
好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!