@inproceedings{luo-etal-2025-mmevol,
title = "{MME}vol: Empowering Multimodal Large Language Models with Evol-Instruct",
author = "Luo, Run and
Zhang, Haonan and
Chen, Longze and
Lin, Ting-En and
Liu, Xiong and
Wu, Yuchuan and
Yang, Min and
Li, Yongbin and
Wang, Minzheng and
Zeng, Pengpeng and
Gao, Lianli and
Shen, Heng Tao and
Li, Yunshui and
Alinejad-Rokny, Hamid and
Xia, Xiaobo and
Song, Jingkuan and
Huang, Fei",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.1009/",
doi = "10.18653/v1/2025.findings-acl.1009",
pages = "19655--19682",
ISBN = "979-8-89176-256-5",
abstract = "The development of Multimodal Large Language Models (MLLMs) has seen significant progress, driven by increasing demands across various fields (e.g., multimodal agents, embodied intelligence). While model-driven approaches aim to enhance MLLM capabilities through diverse architectures, their performance gains have become increasingly marginal. In contrast, data-driven methods, which scale up image-text instruction datasets, have proven more effective but face challenges related to limited data diversity and complexity. The absence of high-quality instruction data remains a major bottleneck in MLLM development. To address this issue, we propose , a novel multimodal instruction data evolution framework. This framework iteratively enhances data quality through a refined combination of fine-grained perception, cognitive reasoning, and interaction evolution, generating a more complex and diverse image-text instruction dataset that significantly improves MLLM capabilities. Starting with an initial dataset, SEED-163K, we employ to systematically expand instruction diversity, extend visual reasoning steps to improve cognitive abilities, and extract fine-grained visual details to enhance understanding and robustness. To rigorously evaluate our approach, we conduct extensive qualitative analysis and quantitative experiments across 13 vision-language tasks. Compared to baseline models trained on the original seed dataset, our method achieves an average accuracy improvement of 3.1 percentage points. Moreover, our approach attains state-of-the-art (SOTA) performance in nine tasks while using significantly less data than existing state-of-the-art models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="luo-etal-2025-mmevol">
<titleInfo>
<title>MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct</title>
</titleInfo>
<name type="personal">
<namePart type="given">Run</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haonan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Longze</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ting-En</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuchuan</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongbin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minzheng</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pengpeng</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lianli</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="given">Tao</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunshui</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hamid</namePart>
<namePart type="family">Alinejad-Rokny</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaobo</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingkuan</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>The development of Multimodal Large Language Models (MLLMs) has seen significant progress, driven by increasing demands across various fields (e.g., multimodal agents, embodied intelligence). While model-driven approaches aim to enhance MLLM capabilities through diverse architectures, their performance gains have become increasingly marginal. In contrast, data-driven methods, which scale up image-text instruction datasets, have proven more effective but face challenges related to limited data diversity and complexity. The absence of high-quality instruction data remains a major bottleneck in MLLM development. To address this issue, we propose , a novel multimodal instruction data evolution framework. This framework iteratively enhances data quality through a refined combination of fine-grained perception, cognitive reasoning, and interaction evolution, generating a more complex and diverse image-text instruction dataset that significantly improves MLLM capabilities. Starting with an initial dataset, SEED-163K, we employ to systematically expand instruction diversity, extend visual reasoning steps to improve cognitive abilities, and extract fine-grained visual details to enhance understanding and robustness. To rigorously evaluate our approach, we conduct extensive qualitative analysis and quantitative experiments across 13 vision-language tasks. Compared to baseline models trained on the original seed dataset, our method achieves an average accuracy improvement of 3.1 percentage points. Moreover, our approach attains state-of-the-art (SOTA) performance in nine tasks while using significantly less data than existing state-of-the-art models.</abstract>
<identifier type="citekey">luo-etal-2025-mmevol</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.1009</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.1009/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>19655</start>
<end>19682</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct
%A Luo, Run
%A Zhang, Haonan
%A Chen, Longze
%A Lin, Ting-En
%A Liu, Xiong
%A Wu, Yuchuan
%A Yang, Min
%A Li, Yongbin
%A Wang, Minzheng
%A Zeng, Pengpeng
%A Gao, Lianli
%A Shen, Heng Tao
%A Li, Yunshui
%A Alinejad-Rokny, Hamid
%A Xia, Xiaobo
%A Song, Jingkuan
%A Huang, Fei
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F luo-etal-2025-mmevol
%X The development of Multimodal Large Language Models (MLLMs) has seen significant progress, driven by increasing demands across various fields (e.g., multimodal agents, embodied intelligence). While model-driven approaches aim to enhance MLLM capabilities through diverse architectures, their performance gains have become increasingly marginal. In contrast, data-driven methods, which scale up image-text instruction datasets, have proven more effective but face challenges related to limited data diversity and complexity. The absence of high-quality instruction data remains a major bottleneck in MLLM development. To address this issue, we propose , a novel multimodal instruction data evolution framework. This framework iteratively enhances data quality through a refined combination of fine-grained perception, cognitive reasoning, and interaction evolution, generating a more complex and diverse image-text instruction dataset that significantly improves MLLM capabilities. Starting with an initial dataset, SEED-163K, we employ to systematically expand instruction diversity, extend visual reasoning steps to improve cognitive abilities, and extract fine-grained visual details to enhance understanding and robustness. To rigorously evaluate our approach, we conduct extensive qualitative analysis and quantitative experiments across 13 vision-language tasks. Compared to baseline models trained on the original seed dataset, our method achieves an average accuracy improvement of 3.1 percentage points. Moreover, our approach attains state-of-the-art (SOTA) performance in nine tasks while using significantly less data than existing state-of-the-art models.
%R 10.18653/v1/2025.findings-acl.1009
%U https://aclanthology.org/2025.findings-acl.1009/
%U https://doi.org/10.18653/v1/2025.findings-acl.1009
%P 19655-19682
Markdown (Informal)
[MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct](https://aclanthology.org/2025.findings-acl.1009/) (Luo et al., Findings 2025)
ACL
- Run Luo, Haonan Zhang, Longze Chen, Ting-En Lin, Xiong Liu, Yuchuan Wu, Min Yang, Yongbin Li, Minzheng Wang, Pengpeng Zeng, Lianli Gao, Heng Tao Shen, Yunshui Li, Hamid Alinejad-Rokny, Xiaobo Xia, Jingkuan Song, and Fei Huang. 2025. MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct. In Findings of the Association for Computational Linguistics: ACL 2025, pages 19655–19682, Vienna, Austria. Association for Computational Linguistics.