- 博客(7537)
- 收藏
- 关注

原创 基于 ReAct 机制的AI Agent:大模型 ReAct —— 思考与工具协同完成复杂任务推理
ReAct 是一个框架,其概念来源于一篇论文,其核心思想,就是通过思维链的方式,引导模型将复杂问题进行拆分,一步一步地进行推理(Reasoning)和行动(Action),同时还引入了观察()环节,在每次执行(Action)之后,都会先观察()当前现状,然后再进行下一步的推理(ReasonReAct这个框架,就是要让LLM,进行推理,然后采取行动与外界环境互动。ReAct这个框架,就是要让开发者一步步引导LLM进行推理,然后根据推理的结果,判断采取哪个行动。
2024-08-31 00:34:21
941
1

原创 Gradient Descent 梯度下降的数学基础
梯度下降(Gradient Descent)是一种在优化领域被广泛使用的算法,其基本思想是通过迭代更新参数来最小化目标函数的损失。在机器学习、深度学习、优化等领域,我们经常需要通过优化算法来寻找函数的局部极小值,从而解决各种实际问题。梯度下降算法因其简单、高效和易于实现等优点,成为了这些领域中不可或缺的工具。梯度下降算法的基本思想是:根据目标函数的梯度方向,反向更新模型参数,逐步逼近函数的局部极小值。初始化参数:随机初始化模型的参数。计算梯度:计算目标函数在某一点的梯度。
2024-08-20 01:23:46
1195

原创 大语言模型原理基础与前沿 双层路由多模态融合、多任务学习和模块化架构
大语言模型(Large Language Models,LLMs)已经成为人工智能和自然语言处理领域的重要研究方向。随着GPT-3、BERT等模型的出现,大语言模型在各种任务中展现出了惊人的性能。然而,随着模型规模的不断扩大和应用场景的日益复杂,传统的大语言模型架构面临着诸多挑战。为了应对这些挑战,研究人员提出了一系列创新性的解决方案,其中包括双层路由多模态融合、多任务学习和模块化架构等前沿技术。本文将深入探讨这些前沿技术的原理、实现方法以及应用前景,旨在为读者提供一个全面而深入的大语言模型技术发展概览。
2024-07-17 00:32:55
790

原创 高可用高负载高并发的互联网应用的架构设计
在当今数字化时代,互联网应用已经成为我们日常生活中不可或缺的一部分。随着用户数量的激增和业务需求的不断扩大,构建高可用、高负载、高并发的互联网应用架构已经成为现代软件工程中的一个重要挑战。本文将深入探讨如何设计和实现一个能够满足这些要求的互联网应用架构,从而为读者提供一个全面的技术指南。高可用性(High Availability)指的是系统能够持续运行并提供服务的能力,即使在面对各种故障和异常情况时也能保持稳定运行。
2024-07-17 00:31:53
1203

原创 AI人工智能深度学习算法:神经网络的复杂性与能力
人工智能(AI)领域在过去十年中取得了巨大的进展,其中深度学习算法和神经网络模型扮演了关键角色。神经网络,作为深度学习的核心组件,以其强大的学习能力和灵活的结构,在各种复杂任务中展现出惊人的性能。然而,随着神经网络模型变得越来越复杂,其内部机制和能力边界也变得愈发难以理解和预测。本文将深入探讨神经网络的复杂性及其所带来的强大能力,剖析其背后的原理,并探讨其在现实世界中的应用及未来发展趋势。神经网络的核心原理是模拟人脑的神经元结构和信息处理方式。
2024-07-07 00:13:59
1253

原创 【LangChain编程:从入门到实践】LangChain中的代理
LangChain是一个用于开发由语言模型驱动的应用程序的框架。它可以帮助开发者更容易地将语言模型与外部数据源和APIs集成,从而创建更强大的AI应用。定义工具:为代理创建一组可用的工具创建提示模板:定义如何格式化用户输入和工具输出初始化语言模型:选择并配置合适的语言模型创建代理:将工具、提示模板和语言模型组合成一个代理对象运行代理:将用户输入传递给代理,获取生成的输出LangChain中的代理为构建由语言模型驱动的智能应用开辟了新的可能性。
2024-05-28 01:13:27
410

原创 深度Q网络DQN的数学原理解析
强化学习是机器学习的一个重要分支,它通过奖赏和惩罚的方式训练智能体(agent)在特定环境中做出最优决策。其中,深度Q网络(Deep Q-Network, DQN)是强化学习中一个非常重要的算法,它结合了深度学习和Q-learning的优势,在众多强化学习任务中取得了突破性的成果。DQN算法最初由Google DeepMind提出,并应用于Atari游戏,展现了超越人类水平的性能。此后,DQN在更多领域如机器人控制、自然语言处理、计算机视觉等都取得了广泛应用。
2024-04-10 12:49:03
567

原创 高级 RAG 技术:图解概览
本文试图勾勒出 RAG 的核心算法方法,并展示其中的一些,希望这能激发你在 RAG 流程中尝试一些新思路,或者为今年涌现的众多技术带来一定的系统性,2023-2024 年是迄今为止在机器学习领域最令人兴奋的一年。
2024-04-09 10:40:54
270

原创 分层强化学习在复杂任务中的层次化决策
在现代人工智能和机器学习领域,强化学习(Reinforcement Learning,RL)已经成为解决复杂决策问题的一种强大工具。然而,随着任务复杂性的增加,传统的平面强化学习方法往往面临着维度灾难、稀疏奖励、长期依赖等挑战。为了克服这些限制,研究人员提出了分层强化学习(Hierarchical Reinforcement Learning,HRL)作为一种更为高效和灵活的学习范式。分层强化学习通过将复杂任务分解为多个层次的子任务,并在不同抽象层次上学习决策策略,从而实现了对复杂环境的高效探索和学习。
2024-04-03 01:24:17
445
原创 智能运维系统架构设计中的存储方案:AI应用架构师的选型指南(时序库_关系库_NoSQL)
智能运维(AIOps)系统的核心价值在于通过数据驱动的智能分析实现故障预测、根因定位与自动化运维。而存储方案的选择直接决定了系统的性能、扩展性与智能分析能力——时序库(TSDB)擅长处理高并发时序数据,关系库(RDBMS)保障复杂事务与强一致性,NoSQL则适配非结构化/半结构化数据的高吞吐量需求。本文从AIOps的数据本质出发,以第一性原理拆解存储选型的核心逻辑,结合理论框架、架构设计、实现机制与实际案例,为AI应用架构师提供一套基于数据特征与场景需求的存储选型决策体系,覆盖从入门到专家的多层次理解需求。
2025-08-07 09:43:27
199
原创 AI提示系统技术架构核心组件详解:提示工程架构师带你逐个攻破设计难点
提示模板引擎是预定义的“提示骨架”,通过填充动态参数(比如用户问题、订单信息)生成最终提示。避免重复写相同的提示结构。你是一个友好的电商客服,用户的问题是:{{ user_question }}用户的订单信息:{{ order_info }}请遵循以下规则:1. 先回应情绪(比如“很抱歉让你久等了”);2. 用订单信息中的具体内容解答;3. 结尾加“有需要随时联系我”。你是一个友好的电商客服,用户的问题是:“我的订单12345怎么还没发?
2025-08-07 03:04:32
364
原创 AI架构师指南:上下文工程中的知识图谱整合
上下文工程(Context Engineering)是围绕大模型的“输入上下文”展开的一系列技术流程,目标是让大模型“听懂”用户的真实意图。上下文获取:从用户会话、历史日志、外部知识库中收集原始信息;上下文建模:将原始信息转化为可被大模型理解的结构(如文本、向量、图);上下文更新:根据实时交互动态调整上下文(如用户新增“摄像头模糊”的反馈);上下文注入:将处理后的上下文传递给大模型,辅助生成输出。扁平的文本或向量无法表达“实体间的语义关系”——比如“苹果”是公司还是水果?
2025-08-07 01:32:21
175
原创 《一文读懂Agentic AI在金融提示工程实践的关键,架构师速进》
当AI从“执行指令的工具”进化为“能自主决策的智能代理”(Agentic AI),金融行业迎来了前所未有的变革——从高频交易到风险防控,从个性化投顾到合规审计,Agentic AI正在重构金融系统的底层逻辑。而提示工程(Prompt Engineering)则是这场变革的“翻译官”:它将金融业务规则、监管要求和用户需求转化为Agent能理解的“语言”,让Agent从“能做事”变成“会做事”。本文针对金融架构师的核心需求,从Agentic AI的底层逻辑金融提示工程的关键技术落地实践的架构设计。
2025-08-07 00:05:55
368
原创 AI系统弹性扩展的监控与报警:如何提前预警流量峰值?
AI系统的高并发、动态负载特性对弹性扩展能力提出了严格要求,而提前预警流量峰值是实现弹性扩展的核心前提。本文从概念基础出发,解析弹性扩展与流量预警的底层逻辑;通过理论框架推导预测性监控的数学模型,对比传统阈值报警与现代预测性报警的优劣;设计了包含数据采集-处理-预测-决策的端到端架构,并给出实现机制中的算法优化、代码示例与边缘情况处理;结合实际应用场景,提供实施策略、集成方法与运营管理建议;最后探讨扩展动态、安全伦理等高级考量,以及未来演化方向。本文为AI系统的弹性扩展监控与报警提供了一套。
2025-08-06 22:43:57
223
原创 医疗AI诊断系统告警体系:架构师如何设计高可用监控(附Prometheus配置)
我是张三,资深软件架构师,专注于医疗AI系统的设计与优化,拥有10年的运维和监控经验。曾参与多个大型医疗AI项目的告警体系设计,擅长用Prometheus生态解决高可用监控问题。欢迎关注我的博客(https://zhangsan.dev),或在评论区分享你的经验。行动号召如果你正在设计医疗AI系统的告警体系,不妨尝试本文中的方法——从精准的告警规则开始,逐步构建高可用的监控体系。如果遇到问题,欢迎在评论区留言,我会尽力解答。也欢迎分享你的经验,让我们一起提升医疗AI系统的可靠性!
2025-08-06 21:11:21
515
原创 工业AI能耗优化可解释性:架构师的7套方案,让工程师看懂优化逻辑
工业AI能耗优化的可解释性面临着多方面的挑战。首先,AI模型本身具有较高的复杂性,尤其是深度学习模型,其复杂的网络结构和大量的参数使得能耗优化的原理难以直观理解。例如,一个多层卷积神经网络在进行图像识别任务时,不同层的计算量和能耗贡献难以精确分析。其次,工业场景的多样性导致能耗优化方案需要具备高度的针对性。不同行业、不同生产流程对AI系统的要求不同,能耗优化的重点和方法也有所差异。
2025-08-06 19:39:14
401
原创 微服务架构下提示工程与API网关的集成:2步实现提示驱动的API路由优化
想象你住在一个有100家商店的小区(微服务架构),门口的保安(API网关)负责引导客人到正确的商店。只看客人手里的纸条——如果纸条写着“3号楼1层”,就引导到蛋糕店;如果写着“5号楼2层”,就引导到书店。但客人往往不会写纸条,而是说:“我要买甜的、软的、适合小朋友的零食”(自然语言请求),或者“我昨天买的蛋糕坏了,想换一个”(带上下文的请求)。这时候,传统保安就懵了——因为没有对应的规则。基于固定的路径、参数或请求头。
2025-08-06 18:07:34
605
原创 某电商企业智能工作流AI优化引擎实践:售后效率提升60%(附截图)
售后工作流:电商售后的全流程环节,包括“用户反馈→意图识别→流程匹配→任务执行→结果反馈”五大步骤。智能工作流AI优化引擎:通过AI技术(NLP、RPA、机器学习)对售后工作流进行自动化、智能化改造的系统,核心目标是“减少重复劳动、提升处理效率、改善用户体验”。NLP(自然语言处理):让电脑“听懂人话”的技术,用于识别用户反馈的意图(比如“未收到货”“退换货”“投诉”)。RPA(机器人流程自动化):模拟人类操作电脑的技术,用于自动完成重复任务(比如查询物流、生成退货地址、发送提醒短信)。
2025-08-06 13:30:17
456
原创 Agentic AI提示工程标准化:架构师如何制定智能体开发流程与规范?
Agentic AI(智能体AI)的崛起标志着人工智能从“工具化交互”向“自主化协作”的范式转移——智能体不再是被动响应prompt的“答题机器”,而是能感知环境、制定目标、自主行动并迭代优化的“协作伙伴”。然而,智能体的自主性也带来了可控性、一致性、可扩展性的挑战:如何让100个智能体遵循同一套规则行动?如何避免目标漂移?如何在安全性与灵活性间平衡?本文从架构师视角出发,提出Agentic AI提示工程标准化框架。
2025-08-06 11:58:09
498
原创 攻略来了!提示工程架构师的AI提示系统跨平台整合攻略来袭
当企业同时使用OpenAI、阿里云DashScope、自研大模型等多平台AI能力时,分散的提示系统会导致开发效率低下、上下文一致性缺失、模型能力无法最大化利用等痛点。本文以提示工程架构师的视角,系统性拆解AI提示系统跨平台整合的核心逻辑:从「第一性原理」推导整合的本质,到「四层架构」的设计方法论,再到「代码实现」与「落地运营」的全流程指南。通过适配器模式统一模型接口、模板引擎实现提示复用、上下文中间层保障一致性,最终帮助企业构建「一次编写,多平台运行」的高效提示系统。
2025-08-06 10:36:11
534
原创 AI应用架构师:企业AI标准化体系的架构先锋
持续监控与优化:建立完善的监控体系,实时监控数据质量、模型性能和部署状态,及时发现问题并进行优化。文档化:对数据标准、模型标准、部署标准和安全标准进行详细文档化,方便团队成员查阅和遵循,也有助于新成员快速上手。定期培训与沟通:定期组织团队成员进行培训,分享最新的技术和最佳实践。加强不同部门之间的沟通与协作,确保AI标准化体系在整个企业内得到有效实施。本文全面阐述了企业AI标准化体系的构建方法,从数据、模型、部署和安全四个核心维度入手,详细介绍了环境准备、分步实现、关键代码解析以及验证、优化等内容。
2025-08-06 03:57:30
802
原创 必看!提示工程架构师的AI上下文工程多语言支持前沿策略
上下文工程(Context Engineering)和多语言场景的独特挑战。上下文工程是通过技术手段管理AI对话中的上下文信息,确保AI能够理解“当前对话与过去对话的关联”,从而生成连贯、准确的回复。保持一致性:比如用户问“这个产品多少钱?”,AI回复后,用户问“有没有折扣?”,AI要知道“折扣”是针对“这个产品”的。理解指代:比如“它的电池续航怎么样?”中的“它”,需要正确关联到之前提到的“iPhone 15”。延续意图:比如用户先问“如何注册账号?”,接着问“需要什么资料?
2025-08-06 02:35:34
377
原创 实战经验!AI应用架构师在芯片验证AI加速器中的5个实战心得
要解决这个问题,必须从目标AI应用中提取关键特征,将其转化为验证需求。收集目标AI应用的信息典型模型:比如YOLOv5(目标检测)、ResNet-50(图像分类)、U-Net(语义分割);输入数据:比如图像(1x3x640x640)、视频帧(30fps);推理流程:预处理(如归一化、 resize)、推理(卷积、全连接)、后处理(如非极大值抑制)。提取模型的关键特征张量形状:比如YOLOv5的输入是1x3x640x640(NCHW),输出是1x80x80x3(边界框);数据类型。
2025-08-06 01:13:38
334
原创 深度解析:提示工程架构师如何推动教育行业的AI个性化学习?
在深入之前,我们需要明确几个核心概念,避免混淆。AI个性化学习是教育行业的未来,而提示工程是实现这一未来的关键技术。提示工程架构师不是“写提示词的人”,而是教育需求与AI技术之间的翻译官他们理解教育行业的核心逻辑(学习科学、认知心理学);他们掌握提示工程的技术方法(多轮对话、结构化提示、动态调整);他们将“教育目标”转化为“AI可执行的提示策略”,推动个性化学习的落地。未来,随着AI技术的发展,提示工程架构师的角色会越来越重要。
2025-08-05 23:51:41
444
原创 深度剖析:Agentic AI系统架构师的独特魅力
当ChatGPT让“大模型”成为全民热词时,AI行业的底层逻辑正在发生深刻变革——从“单点模型能力”向“复杂系统能力”跃迁。过去,我们讨论AI时,焦点是“模型能做什么”(比如生成文本、识别图像);现在,我们更关心“系统能解决什么问题”(比如自动完成客户服务全流程、辅助科学家设计实验、优化企业供应链)。而连接“模型能力”与“真实问题”的关键角色,正是Agentic AI系统架构师。Agentic AI系统架构师的独特魅力,在于**“用系统思维连接模型、工具与业务,创造可复制的价值”**。
2025-08-05 22:20:09
568
原创 提示工程架构师的知识灯塔:提示工程团队知识管理
当AI大模型成为企业数字化转型的核心引擎,提示工程(Prompt Engineering)已从“技巧”升级为“团队能力”。然而,多数提示工程团队仍面临知识散落、复用率低、新人上手慢、经验流失等痛点——就像厨师们把菜谱写在餐巾纸、手机备忘录和聊天记录里,每次做饭都要翻遍所有地方,甚至重复发明“番茄炒蛋”。本文将为提示工程架构师和团队管理者提供一套可落地的知识管理体系。
2025-08-05 20:57:44
559
原创 下一代自动驾驶:提示工程带来的技术突破与应用前景
我是李默,一名专注于大模型在自动驾驶中应用的算法工程师。曾参与多个L4级自动驾驶项目,发表过多篇关于提示工程和多模态学习的论文。欢迎关注我的公众号“自动驾驶前沿”,一起探讨技术边界。(注:文中案例和数据均为模拟或公开资料整理,不代表具体公司的真实产品性能。
2025-08-05 19:21:15
613
原创 AI应用架构师:引领企业数据价值挖掘走向巅峰
本文将从“AI应用架构师”的视角,系统解析企业数据价值挖掘的完整路径。AI应用架构师的角色定位与核心能力模型;企业数据价值挖掘的全链路架构设计(从数据采集到业务落地);技术组件选型、业务需求转化、跨团队协作的实战方法论;结合真实案例,拆解AI架构师如何推动数据从“资源”变为“资产”,最终创造业务价值。有3-5年软件开发、数据工程或算法研发经验,对AI技术有初步了解,希望深入掌握AI应用架构设计,推动企业数据价值落地的中级技术人员、技术管理者,或有志成为AI应用架构师的从业者。角色定位。
2025-08-05 17:53:49
746
原创 Agentic AI上下文工程实体识别技术:提示工程架构师的独家见解
Agentic AI(智能体人工智能)的核心优势在于自主感知上下文、持续决策与行动,而上下文工程是其“感知能力”的基石。实体识别(Entity Recognition, ER)作为上下文构建的核心环节,需突破传统静态模型的局限,适配智能体的动态环境、多模态输入与长时记忆需求。本文从提示工程架构师的视角,结合第一性原理与实践经验,系统拆解Agentic AI上下文工程中实体识别的理论框架、架构设计、实现机制与高级考量。通过层次化解释(专家→中级→入门)、可视化建模(Mermaid图表)与生产级代码示例。
2025-08-05 16:21:24
547
原创 从需求到架构:AI应用架构师如何将自动化与智能化融合需求转化为技术方案?
决策与执行的衔接:如何将机器学习模型的"概率性输出"转化为自动化系统的"确定性执行指令"?反馈回路的设计:如何将执行结果的"状态数据"转化为模型优化的"训练信号"?系统的鲁棒性:如何处理模型预测的"不确定性"与自动化执行的"可靠性"之间的冲突?按照"感知层→知识层→决策层→执行层→反馈层"分解组件;为每个组件定义输入/输出接口(如感知层输出"结构化状态数据",决策层输入"状态数据"输出"动作指令");
2025-08-05 14:49:21
495
原创 用TensorFlow搭建物理实验AI架构:架构师手把手教你实现
我是Jack,一位专注于AI在物理实验中落地的软件工程师。曾参与LHC的ATLAS探测器AI项目,负责数据Pipeline和模型部署。我的博客(https://jackphysics.ai)分享物理实验AI的实战经验,欢迎关注!最后:物理实验AI不是“黑盒魔法”,而是“物理规律+AI工具”的组合。只要你理解自己的实验,用对工具,就能让AI成为实验的“智能助手”。期待你的实验AI项目取得成功!
2025-08-05 13:11:45
668
原创 AI提示工程框架:架构师总结的5个核心模型(适合系统学习)
当任务比较复杂时(比如“写一篇关于AI伦理的论文”“设计一个电商系统的架构”),直接给AI一个大目标,它可能会输出逻辑混乱、不完整的内容。这时候需要用分层抽象模型把大目标拆解成“高层目标→中层任务→底层指令”三个层次,逐步细化。就像建房子,先确定“建一栋10层的居民楼”(高层目标),再拆成“打地基→建框架→装修”(中层任务),最后拆成“买水泥→搭脚手架→贴瓷砖”(底层指令)。AI处理复杂任务时,也需要这样的“分步指导”。
2025-08-05 11:39:43
810
原创 3个月让AI提示成为用户依赖:提示工程架构师的体验设计实战
本文结合提示工程架构师的实战经验,探讨如何通过体验设计方法论,在3个月内构建让用户主动、持续、不可替代使用的AI提示系统。从用户需求感知提示自适应生成效果闭环优化等核心环节入手,拆解每个阶段的关键任务技术实现和运营策略,结合真实案例说明如何将提示工程从“技术优化”升级为“用户体验驱动”。最终实现用户从“尝试使用”到“持续依赖”的转变,为企业打造AI交互的核心竞争力。效果不稳定:同样的提示有时生成优质内容,有时输出垃圾信息(如LLM的“幻觉”问题)。学习成本高。
2025-08-05 10:07:37
858
原创 必藏!提示工程架构师整理的提示注入攻击防范手册
提示注入攻击问题空间主要围绕攻击者如何构造恶意提示,突破应用系统的安全防线,以及防御者如何有效地识别和阻止这些恶意提示。具体而言,攻击者可能利用模型对自然语言的理解漏洞,构造看似正常但实际上包含恶意意图的提示。这些恶意提示可能绕过输入验证机制,诱导模型执行非预期的任务,如泄露用户或系统的敏感信息、生成有害内容、篡改输出结果等。防御者需要解决的问题包括如何设计更加健壮的输入验证机制,准确识别恶意提示;如何通过对抗训练等技术手段提高模型对恶意提示的鲁棒性;
2025-08-05 03:43:33
568
原创 提示工程架构师必看:多模态上下文工程化的实战合规与隐私
假设你是某电商平台的提示工程架构师,老板要求你设计一个"多模态智能客服":用户可以发文本(“我的快递丢了”)、图像(破损的包裹照片)、音频(急躁的语音投诉),系统要自动理解这些信息,生成"道歉+补发流程"的回复。法律风险:GDPR罚款(最高占全球营收4%);用户信任崩塌:社交媒体上的"隐私泄露"负面舆情;模型失效:敏感数据污染训练集,导致模型输出违规内容(如泄露用户地址)。本文的目的,就是帮你解决"多模态上下文处理"中的合规痛点(如何符合法规)与隐私难点。
2025-08-05 02:06:28
286
原创 提示工程架构师:提示工程在社交媒体营销的应用策略大公开
凌晨1点,小张盯着电脑里第10版AI生成的小红书笔记,揉着发疼的眼睛——“这写的哪是闺蜜分享?明明是机器人念说明书!工具会用,但不知道怎么"教"AI听懂自己的需求。而解决这个问题的核心,就是「提示工程」(Prompt Engineering)——它不是"写句子",而是"给AI设计思考路径",让AI从"凑活用"变成"精准帮"。本文结合我作为提示工程架构师的3年实战经验,拆解社交媒体营销的3大核心场景(内容生成、用户互动、转化提升),分享10个可直接落地的Prompt策略,附12个现成模板。
2025-08-05 00:44:32
542
原创 超级计算场景下科研AI智能体的自适应学习机制,AI应用架构师详解
当超级计算机(HPC)遇到AI智能体,科研计算的边界正在被重新定义。传统HPC依赖固定的计算策略,难以应对科研任务的动态变化(如气候模拟的网格自适应、药物发现的分子筛选优先级调整);而普通AI模型则因无法感知HPC资源状态(如节点负载、网络带宽),常常导致资源浪费或任务延迟。本文从AI应用架构师的视角,拆解科研AI智能体的自适应学习机制。
2025-08-04 23:13:13
315
原创 企业级大模型私有化部署:架构设计与实施策略
企业级大模型的私有化部署绝非一蹴而就的项目,而是一项需要长远规划和持续投入的战略性工程。安全可控、成本优化、深度集成、性能保障是企业私有化部署的根本诉求。从底层的算力基石 (GPU硬件 + K8s),到核心的模型服务层 (vLLM/TGI + 优化),再到提升效率体验的平台层 (管理/监控)和无处不在的安全生命线 (认证/加密/审计),每一层都环环相扣,缺一不可。与的结合是K8s管好GPU资源的金钥匙。从需求评估->架构设计->模型优化->K8s部署->集成->运维监控。
2025-08-04 21:44:25
548
原创 计算机视觉必学框架对比:OpenCV vs TensorFlow vs PyTorch
OpenCV:解决低层次视觉任务(图像读取、resize、灰度化、滤波)、经典算法(SIFT特征提取、Haar cascades目标检测、霍夫变换)、实时处理(如摄像头视频流分析)。TensorFlow:解决高层次深度学习任务(图像分类、目标检测、语义分割)、大规模分布式训练(如ResNet-50在ImageNet上的训练)、跨平台部署(移动端TensorFlow Lite、服务器端TensorFlow Serving)。PyTorch:解决研究型任务。
2025-08-04 20:08:13
651
原创 从实验到规模化:AI应用架构师的企业数据增强策略
在企业AI项目中,“实验成功≠规模化落地”是最常见的陷阱——很多团队在实验阶段用小范围、人工整理的“干净数据”跑出了漂亮的模型指标,但一旦推广到全量业务场景,就会遇到数据质量暴跌、流程不可复用、结果与业务脱节等问题。某零售企业的推荐模型,实验时用10万条抽样用户行为数据准确率达90%,但规模化后用全量1亿条数据时,因存在大量重复点击、无效浏览等脏数据,准确率骤降到65%;
2025-08-04 18:31:02
572
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人