使用 Gemini 2.5 和 LangGraph 从头开始构建 ReAct 智能体

LangGraph 是一个用于构建有状态 LLM 应用的框架,因此非常适合构建 ReAct(推理和执行)智能体。

ReAct 代理将 LLM 推理与操作执行相结合。他们会迭代思考、使用工具并根据观察结果采取行动,以实现用户目标,并动态调整方法。此模式在 “ReAct: Synergizing Reasoning and Acting in Language Models”(2023)中首次提出,旨在通过灵活的工作流程来模仿人类解决问题的方式。

虽然 LangGraph 提供了预构建的 ReAct 代理 (create_react_agent),但当您需要对 ReAct 实现进行更精细的控制和自定义时,它会发挥出色作用。

LangGraph 使用三个关键组件将代理建模为图:

  • State:表示应用当前快照的共享数据结构(通常为 TypedDictPydantic BaseModel)。
  • Nodes:对代理的逻辑进行编码。它们会接收当前状态作为输入,执行一些计算或副作用,并返回更新后的状态,例如 LLM 调用或工具调用。
  • Edges:根据当前 State 定义要执行的下一个 Node,以允许使用条件逻辑和固定转换。

如果您还没有 API 密钥,可以前往 Google AI Studio 免费获取一个。

pip install langgraph langchain-google-genai geopy requests

在环境变量 GEMINI_API_KEY 中设置 API 密钥。

import os

# Read your API key from the environment variable or set it manually
api_key = os.getenv("GEMINI_API_KEY")

为了更好地了解如何使用 LangGraph 实现 ReAct 代理,我们来看看一个实用示例。您将创建一个简单的代理,其目标是使用工具查找指定地点的当前天气。

对于此天气代理,其 State 需要维护正在进行的对话历史记录(作为消息列表)和步骤数计数器,以进一步说明状态管理。

LangGraph 提供了一个方便的辅助程序 add_messages,用于更新状态中的消息列表。它用作reducer,也就是说,它会接受当前列表和新消息,然后返回一个合并后的列表。它会智能地按消息 ID 处理更新,并默认针对新的唯一消息采用“仅追加”行为。

from typing import Annotated,Sequence, TypedDict

from langchain_core.messages import BaseMessage
from langgraph.graph.message import add_messages # helper function to add messages to the state


class AgentState(TypedDict):
    """The state of the agent."""
    messages: Annotated[Sequence[BaseMessage], add_messages]
    number_of_steps: int

接下来,您需要定义天气工具。

from langchain_core.tools import tool
from geopy.geocoders import Nominatim
from pydantic import BaseModel, Field
import requests

geolocator = Nominatim(user_agent="weather-app")

class SearchInput(BaseModel):
    location:str = Field(description="The city and state, e.g., San Francisco")
    date:str = Field(description="the forecasting date for when to get the weather format (yyyy-mm-dd)")

@tool("get_weather_forecast", args_schema=SearchInput, return_direct=True)
def get_weather_forecast(location: str, date: str):
    """Retrieves the weather using Open-Meteo API for a given location (city) and a date (yyyy-mm-dd). Returns a list dictionary with the time and temperature for each hour."""
    location = geolocator.geocode(location)
    if location:
        try:
            response = requests.get(f"https://api.open-meteo.com/v1/forecast?latitude={location.latitude}&longitude={location.longitude}&hourly=temperature_2m&start_date={date}&end_date={date}")
            data = response.json()
            return {time: temp for time, temp in zip(data["hourly"]["time"], data["hourly"]["temperature_2m"])}
        except Exception as e:
            return {"error": str(e)}
    else:
        return {"error": "Location not found"}

tools = [get_weather_forecast]

接下来,初始化模型并将工具绑定到模型。

from datetime import datetime
from langchain_google_genai import ChatGoogleGenerativeAI

# Create LLM class
llm = ChatGoogleGenerativeAI(
    model= "gemini-2.5-pro-preview-05-06",
    temperature=1.0,
    max_retries=2,
    google_api_key=api_key,
)

# Bind tools to the model
model = llm.bind_tools([get_weather_forecast])

# Test the model with tools
res=model.invoke(f"What is the weather in Berlin on {datetime.today()}?")

print(res)

在运行代理之前,最后一步是定义节点和边。在此示例中,您有两个节点和一条边。- 用于执行工具方法的 call_tool 节点。LangGraph 为此提供了一个名为 ToolNode 的预构建节点。- 使用 model_with_tools 调用模型的 call_model 节点。 - 用于决定是调用工具还是模型的 should_continue 边。

节点和边的数量不固定。您可以向图表中添加任意数量的节点和边。例如,您可以在调用工具或模型之前添加用于添加结构化输出的节点或用于检查模型输出的自验证/反射节点。

from langchain_core.messages import ToolMessage
from langchain_core.runnables import RunnableConfig

tools_by_name = {tool.name: tool for tool in tools}

# Define our tool node
def call_tool(state: AgentState):
    outputs = []
    # Iterate over the tool calls in the last message
    for tool_call in state["messages"][-1].tool_calls:
        # Get the tool by name
        tool_result = tools_by_name[tool_call["name"]].invoke(tool_call["args"])
        outputs.append(
            ToolMessage(
                content=tool_result,
                name=tool_call["name"],
                tool_call_id=tool_call["id"],
            )
        )
    return {"messages": outputs}

def call_model(
    state: AgentState,
    config: RunnableConfig,
):
    # Invoke the model with the system prompt and the messages
    response = model.invoke(state["messages"], config)
    # We return a list, because this will get added to the existing messages state using the add_messages reducer
    return {"messages": [response]}


# Define the conditional edge that determines whether to continue or not
def should_continue(state: AgentState):
    messages = state["messages"]
    # If the last message is not a tool call, then we finish
    if not messages[-1].tool_calls:
        return "end"
    # default to continue
    return "continue"

现在,您已拥有构建代理的所有组件。我们来组合一下。

from langgraph.graph import StateGraph, END

# Define a new graph with our state
workflow = StateGraph(AgentState)

# 1. Add our nodes 
workflow.add_node("llm", call_model)
workflow.add_node("tools",  call_tool)
# 2. Set the entrypoint as `agent`, this is the first node called
workflow.set_entry_point("llm")
# 3. Add a conditional edge after the `llm` node is called.
workflow.add_conditional_edges(
    # Edge is used after the `llm` node is called.
    "llm",
    # The function that will determine which node is called next.
    should_continue,
    # Mapping for where to go next, keys are strings from the function return, and the values are other nodes.
    # END is a special node marking that the graph is finish.
    {
        # If `tools`, then we call the tool node.
        "continue": "tools",
        # Otherwise we finish.
        "end": END,
    },
)
# 4. Add a normal edge after `tools` is called, `llm` node is called next.
workflow.add_edge("tools", "llm")

# Now we can compile and visualize our graph
graph = workflow.compile()

您可以使用 draw_mermaid_png 方法直观呈现图表。

from IPython.display import Image, display

display(Image(graph.get_graph().draw_mermaid_png()))

png

现在,我们来运行代理。

from datetime import datetime
# Create our initial message dictionary
inputs = {"messages": [("user", f"What is the weather in Berlin on {datetime.today()}?")]}

# call our graph with streaming to see the steps
for state in graph.stream(inputs, stream_mode="values"):
    last_message = state["messages"][-1]
    last_message.pretty_print()

现在,您可以继续对话,例如询问其他城市的天气或让它进行天气对比。

state["messages"].append(("user", "Would it be in Munich warmer?"))

for state in graph.stream(state, stream_mode="values"):
    last_message = state["messages"][-1]
    last_message.pretty_print()