【Conda、Poetry、Virtualenv、Pipenv、UV、Hatch 等】Anaconda + PyCharm:打造多版本 Python 开发的全栈隔离与多种虚拟环境管理实战
在 Python 开发中,良好的环境管理能够避免依赖冲突,提高项目的高维护性和强移植性。
本文将介绍如何使用 Anaconda 和 PyCharm 构建多种项目虚拟环境,包括 Conda 、Poetry、Virtualenv、Pipenv、UV 和 Hatch 等,以满足不同项目的需求,同时尽量采用图形化操作,减少手动命令的使用(零基础友好)。
Anaconda 全环境工具链 路径树管理 和 环境创建 指南(Poetry、Pipenv、venv、uv、Hatch)_uv 环境-CSDN博客
……
更多实战笔记,请参见往期笔记。
一、Anaconda 安装与基础环境配置
(一) 安装 Anaconda
1.1 安装 Anaconda
-
下载 :根据我们的操作系统,从 Anaconda 官方网站下载适合的安装程序。
-
安装 :运行安装程序,建议将 Anaconda 安装在非系统盘(避免占用C盘空间),如 D:\ProgramData\anaconda3。
-
环境变量:安装时勾选 “Add Anaconda to PATH” (自动添加环境变量)选项,以便在系统终端中直接使用 Anaconda 提供的命令,以及避免手动编辑环境变量。
1.2 验证 Anaconda 安装
安装完成后,在终端中运行以下命令,验证 Anaconda 是否安装成功:
conda --version
若返回 Anaconda 的版本信息,则说明安装成功。
(二)用 Anaconda 统一进行 Python 版本管理
在开发过程中,为了确保项目的稳定性和一致性,推荐使用 Conda 来管理 Python 的不同版本,而不是直接在系统中下载和安装 Python 的各个版本。
Conda 的环境管理功能允许我们为每个项目创建独立的 Python 环境,每个环境可以使用不同的 Python 版本,这样可以最大限度地保证 Anaconda 的健康和稳定,同时满足各种虚拟环境需求。
-
创建 Conda Python 环境 :使用图形界面创建所需的 Python 版本环境。
# 此处的环境命名建议:{用途+版本},如:
python38 #对应python3.8版本 + R 语言支持
python39 #对应python3.9版本 + R 语言支持
python310 #对应python3.10版本 + R 语言支持
python311 #对应python3.11版本 + R 语言支持
python312 #对应python3.12版本 + R 语言支持
python313 #对应python3.13版本 + R 语言支持
其他专用Conda环境…
-
R 语言支持:在"Create(创建)"弹出的窗口中,输入新环境的名称(如
python313
)和对应的 Python 版本。环境应默认统一储存在D:\ProgramData\anaconda3\envs\路径,然后建议在创建环境时勾选 R 语言支持,以增加环境的通用性。
# 环境统一储存路径
D:\ProgramData\anaconda3\envs\
-
查看 Conda 环境 :使用
conda env list
查看所有 Conda 环境。
conda env list
-
激活 Conda 环境 :使用
conda activate 环境名
激活 / 切换 相应的 Python 版本环境。
conda activate 环境名
(三)安装虚拟环境管理工具链
在创建好 Conda Python 各版本环境之后,为了更好地隔离和管理项目虚拟环境,我们推荐使用 Poetry、Virtualenv、Pipenv、UV 和 Hatch 等工具。
实践表明,通过 pip
渠道安装的这些工具版本通常比 Conda 渠道更新,对现代项目的支持更好。因此,建议在创建好的 Conda 基础环境中,统一使用以下命令安装这些工具:
pip install poetry virtualenv pipenv uv hatch
这样可以确保所有工具都升级到最新版本,充分利用其对现代项目的优化支持。
在其他情况下,应尽量避交叉混用conda install 和 pip install 命令,避免环境依赖出现交叉污染进而破坏 Conda 环境,甚至影响 Anaconda 的健康度。
二、安装 PyCharm
(一) 安装 PyCharm
-
下载 JetBrains Toolbox :从 JetBrains 官方网站下载 JetBrains Toolbox 安装程序。
-
安装 JetBrains Toolbox :运行下载的安装程序,按照提示完成安装。在安装过程中,可以选择默认设置。
-
配置安装路径 :打开 JetBrains Toolbox,进入设置界面,修改 “安装位置” 为非 C 盘的目录(如 D:\JetBrains)。
-
安装 PyCharm :在 JetBrains Toolbox 的应用列表中,找到 PyCharm 并选择所需的版本,点击 “安装” 按钮进行安装。 Toolbox 会自动将 PyCharm 安装到之前配置的非 C 盘目录中。
(二) 创建 PyCharm 项目
-
打开 PyCharm :启动 PyCharm 应用程序。
-
新建项目 :点击 “创建新项目”,在弹出的对话框中输入项目名称和位置。
-
选择 Python 解释器 :在 “Python 解释器” 部分,点击右侧的齿轮图标,选择 “创建虚拟环境”。(详情请见第三章)
(三) 配置项目解释器
-
进入设置 :打开 PyCharm 的 “设置”(File > Settings),选择 “项目:<项目名称> > Python 解释器”。
-
添加解释器 :点击右侧的齿轮图标,选择 “添加”。在弹出的窗口中,选择 “xxx Environment”,然后选择之前创建的 xxx 环境。(详情请见第三章)
三、使用 PyCharm 图形界面创建项目虚拟环境(由 Anaconda 提供 工具链路径)
PyCharm 提供了便捷的图形界面,用于创建和管理不同类型的项目虚拟环境。
结合 Anaconda 的虚拟环境工具链路径(Conda.exe、Python.exe、Poetry.exe、Virtualenv.exe、Pipenv.exe、UV.exe、Hatch.exe 等) + PyCharm 的图形化界面自动创建相关虚拟环境。
(一) 激活 / 切换 相应的 Python 版本环境
-
激活 / 切换 相应的 Python 版本环境:为确保 PyCharm 能顺利识别 Python 及 绑定的 工具链 路径 ,建议先在 终端中 切换到对应 Python 版本的 Conda Python 环境。
-
例如 要创建 Python 3.11 版本 的 相关虚拟环境:
conda activate python311
Python311 工具链路径树状图
│ ├─ Conda 环境名:python311 (Python 版本 3.11)
│ │ ├─ python.exe: D:\ProgramData\anaconda3\envs\python311\python.exe
│ │ ├─ 工具路径: D:\ProgramData\anaconda3\envs\python311\Scripts\
│ │ │ ├─ poetry.exe: D:\ProgramData\anaconda3\envs\python311\Scripts\poetry.exe
│ │ │ ├─ virtualenv.exe: D:\ProgramData\anaconda3\envs\python311\Scripts\virtualenv.exe
│ │ │ ├─ pipenv.exe: D:\ProgramData\anaconda3\envs\python311\Scripts\pipenv.exe
│ │ │ ├─ uv.exe: D:\ProgramData\anaconda3\envs\python311\Scripts\uv.exe
│ │ │ └─ hatch.exe: D:\ProgramData\anaconda3\envs\python311\Scripts\hatch.exe
│ │ ├─ PyCharm解释器路径: D:\ProgramData\anaconda3\envs\python311\python.exe
│ │ └─ 终端命令示例:
│ │ ├─ poetry: "D:\ProgramData\anaconda3\envs\python311\Scripts\poetry.exe" init
│ │ ├─ virtualenv: "D:\ProgramData\anaconda3\envs\python311\python.exe" -m virtualenv .venv
│ │ ├─ pipenv: "D:\ProgramData\anaconda3\envs\python311\Scripts\pipenv.exe" install requests
│ │ ├─ uv: "D:\ProgramData\anaconda3\envs\python311\Scripts\uv.exe" new .venv
│ │ └─ hatch: "D:\ProgramData\anaconda3\envs\python311\Scripts\hatch.exe" env create
(二) 使用 Poetry 创建项目虚拟环境
-
添加解释器 :在 “设置” 中,点击 “Python 解释器” 右侧的齿轮图标,选择 “添加”。
-
选择类型 :在弹出的窗口中,选择 “Poetry” 作为环境类型。
-
指定基础 Python 和 Poetry 路径 :设置基础 Python 解释器为我们创建的 Conda 环境中的 Python.exe 路径,指定 Poetry 的路径为 Conda 环境中的
poetry.exe
路径。 -
创建项目内环境 :勾选 “创建项目内环境” 选项,点击 “确定” 完成配置。
│ │ ├─ python.exe: D:\ProgramData\anaconda3\envs\python311\python.exe
│ │ │ ├─ poetry.exe: D:\ProgramData\anaconda3\envs\python311\Scripts\poetry.exe
【笔记】结合 Conda任意创建和配置不同 Python 版本的双轨隔离的 Poetry 虚拟环境_宝塔面板添加poetry 虚拟环境-CSDN博客
(三) 使用 Pipenv 创建项目虚拟环境
-
添加解释器 :在 “设置” 中,点击 “Python 解释器” 右侧的齿轮图标,选择 “添加”。
-
选择类型 :选择 “Pipenv” 作为环境类型。
-
指定基础 Python 和 Pipenv 路径 :设置基础 Python 解释器和 Pipenv 的路径,点击 “确定” 完成配置。
│ │ ├─ python.exe: D:\ProgramData\anaconda3\envs\python311\python.exe
│ │ │ ├─ pipenv.exe: D:\ProgramData\anaconda3\envs\python311\Scripts\pipenv.exe
(四) 使用 Virtualenv 创建项目虚拟环境
-
添加解释器 :在 “设置” 中,点击 “Python 解释器” 右侧的齿轮图标,选择 “添加”。
-
选择类型 :选择 “Virtualenv” 作为环境类型。
-
指定基础 Python 和位置 :设置基础 Python 解释器为我们之前创建的 Conda 环境中的 Python 路径,指定虚拟环境的位置,勾选 “从基础解释器继承软件包” 选项,点击 “确定” 完成配置。
│ │ ├─ python.exe: D:\ProgramData\anaconda3\envs\python311\python.exe
Windows 系统上高效的 Python 版本管理方案:Anaconda 与 virtualenv 的结合_windows python版本管理-CSDN博客
(五) 使用 UV 创建项目虚拟环境
-
添加解释器 :在 “设置” 中,点击 “Python 解释器” 右侧的齿轮图标,选择 “添加”。
-
选择类型 :选择 “UV” 作为环境类型。
-
指定基础 Python 和 UV 路径 :设置基础 Python 解释器和 UV 的路径,点击 “确定” 完成配置。
│ │ ├─ python.exe: D:\ProgramData\anaconda3\envs\python311\python.exe
│ │ │ ├─ uv.exe: D:\ProgramData\anaconda3\envs\python311\Scripts\uv.exe
(六) 使用 Hatch 创建项目虚拟环境
-
添加解释器 :在 “设置” 中,点击 “Python 解释器” 右侧的齿轮图标,选择 “添加”。
-
选择类型 :选择 “Hatch” 作为环境类型。
-
指定基础 Python 和 Hatch 路径 :设置基础 Python 解释器为我们之前创建的 Conda 环境中的 Python 路径,指定 Hatch 的路径为 Conda 环境中的
hatch.exe
路径,点击 “确定” 完成配置。
│ │ ├─ python.exe: D:\ProgramData\anaconda3\envs\python311\python.exe
│ │ │ └─ hatch.exe: D:\ProgramData\anaconda3\envs\python311\Scripts\hatch.exe
六、总结
本文介绍了如何使用 Anaconda 和 PyCharm 构建多种项目虚拟环境,包括 Poetry、Virtualenv、Pipenv、UV 和 Hatch 等。每种工具都有其独特的特点和优势,可以根据项目需求选择合适的环境管理工具。
通过合理的环境管理,能够有效地避免依赖冲突,提高项目的可移植性和可维护性。在实际开发中,可以根据项目的复杂度、团队协作需求和个人喜好等因素,灵活选择和使用这些工具。统一安装命令部分强调了使用 pip 的原因,即通过 pip 渠道安装的工具版本更新,对现代项目支持更好。同时,建议在创建 Conda 基础环境时勾选 R 语言支持,以增强环境的通用性。在后续工具安装中统一使用 pip 命令,避免交叉使用安装命令导致 Conda 的 Python 3.xx 基础环境依赖污染,确保基础环境的稳定性和开发效率。
PyCharm 的图形化界面使得创建和管理这些环境变得简单直观,降低了新手的学习曲线,使开发者能够更专注于项目开发本身。
【补充笔记】文字流程图:Windows 系统 Python 多级环境管理方案_win11 python 多环境管理-CSDN博客
Windows Python 环境管理终极对比:极简方案 VS 传统方案(仅需 2 个软件实现全流程自动化)_windows anacon python3.10-CSDN博客