精通Go并发编程:请求复制与限流的高级技巧

目录

1. 为什么Go的并发让你又爱又恨?

2. 请求复制:多发请求,哪个快用哪个

2.1 啥是请求复制?

2.2 请求复制的适用场景

2.3 代码实战:用Go实现请求复制

2.4 请求复制的注意事项

3. 限流:给你的系统装上“刹车”

3.1 为什么需要限流?

3.2 限流算法扫盲

3.3 代码实战:Go实现令牌桶限流

3.4 限流的注意事项

4. 请求复制与限流如何联手?

5. 请求复制与限流双剑合璧:打造一个高性能API网关

5.2 代码实战:API网关实现

5.3 优化点与思考

6. 分布式场景:用Redis实现全局限流

6.1 单机限流的局限

6.2 Redis分布式令牌桶实现

6.3 分布式请求复制的挑战

7. 监控与调优:用Prometheus和Grafana看清系统

7.1 为什么需要监控?

7.2 集成Prometheus

7.3 调优建议

8. 并发编程的那些坑:死锁、泄露与channel的“脾气”

8.1 死锁:goroutine的“卡壳”噩梦

8.2 Goroutine泄露:隐形的内存杀手

8.3 Channel的“脾气”:缓冲与非缓冲的选择

9. 开源库推荐:偷懒的正确姿势

9.1 golang.org/x/time/rate:官方限流利器

9.2 go-redis/ratelimit:分布式限流

9.3 其他好用的并发库

10. 真实案例分析:电商场景的并发优化

10.1 场景描述:秒杀系统的压力

10.2 代码实现:秒杀网关

10.3 优化成果与经验


1. 为什么Go的并发让你又爱又恨?

Go语言的并发模型,简单说,就是goroutine+channel的黄金组合。goroutine轻量得像羽毛,几KB的内存占用就能跑一个“线程”,让开发者随手就能撒出几千个并发任务。channel呢?它像个优雅的信使,帮你在线程间传递消息,避免了锁的腥风血雨。但这套组合拳用得好,能让你的程序飞起;用得不好,呵呵,性能瓶颈、死锁、资源泄露排着队找你喝茶。

请求复制限流是Go并发编程中两种高级技巧,专门用来解决高并发场景下的性能与稳定性问题。请求复制能让你的服务在面对不确定性(比如后端服务响应慢)时,依然保持低延迟;限流则是你的大管家,防止系统被疯狂涌入的请求压垮。这两者就像武侠小说里的轻功和内力,一个帮你跑得快,一个让你站得稳。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型大数据攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值