文章目录
- 方法篇:Pytorch学习总结or方法
- 资源篇:常用资源
- 零、pytorch简介
- 一、数据操作(tensor)
- 二、自动求梯度(敲黑板)
- 三、神经网络设计的pytorch版本
- 四、数据集加载
- 五、GPU跑深度学习
- 六、其他问题
-
- 1. `torch.nn.Linear(a, b) `的用法
- 2. pytorch和cuda版本匹配的问题:
- 3. tensor转int/float格式
- 4. 一维增加为二维
- 5. flatten压平操作
- 6. 万能einsum函数的用法
- 7. random和seed种子设置
- 8.矩阵乘法
- 9.dataloader中使用自定义collate_fn函数
- 10. 预测阶段别漏了eval
- 11. list和tensor互相转换
- 12. 统计tensor中负数的个数
- 13. tensor基础操作
- 14. permute()函数用法
- 15. 生成mask矩阵
- 16. model的搭建
- 17. autocast自动类型转换
- 18.epoch内定期保存checkpoint
- 19. contiguous连续存储
- 20. 查看显存占用情况、指定具体显卡
- 21.将k个tensor进行stack
- 22. 用tensor计算平方和
- 23.torch.split的用法
- 24. torch.topk的用法
- reference
方法篇:Pytorch学习总结or方法
(1)资源总结见reference
(2)李宏毅的pytorch:https://www.bilibili.com/video/BV1Wv411h7kN?p=5&spm_id_from=pageDriver
(3)下列的方法摘自知乎大佬范星:
第一步 当作高级Numpy来玩。
看官方的tutorial [Welcome to PyTorch Tutorials]:(https://pytorch.org/tutorials/),
一路next,把第一块内容《Deep Learning with PyTorch: A 60 Minute Blitz》看完就够了,60分钟入门,搞懂Tensor和Variable两大核心概念,知道自动求导是怎么回事。有空的话可以一路next到底,各种基本概念都有个印象。
总之,打开iPython交互界面,当作Numpy来玩就好了。
第二步 找个标准模版研究
看官方的例子[pytorch/examples]:(https://github.com/pytorch/examples),
里面的MNIST和ImageNet的例子都可以研究一下,处理命令行参数的部分比较多余可以略过,看一下标准范式,另外[Learning PyTorch with Examples]:(https://pytorch.org/tutorials/beginner/pytorch_with_examples