自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

小工匠

show me the code ,change the world

  • 博客(2309)
  • 资源 (12)
  • 收藏
  • 关注

原创 小工匠聊架构文章一览【不间断持续更新】

文章摘要 本文系统梳理了微服务架构与分布式技术的核心知识体系,包含三大板块: 微服务布道系列:详细解析从单体架构到服务化的演进路径,涵盖服务注册发现、RPC调用、监控追踪等12个核心主题; 分布式理论篇:深入剖析CAP定理、BASE理论、Paxos算法等分布式系统基石理论; 分布式实战篇:聚焦事务、服务、缓存、存储四大场景,提供两阶段提交、TCC模型、热点key治理等20余种解决方案。文中配有清晰的技术架构图,每个主题均附详细技术文章链接,形成完整的技术图谱。

2020-11-12 00:01:55 85402 10

原创 大模型开发 - Spring AI_统一封装McpRequest和McpResponse

Spring AI框架通过@Tool和@ToolParam注解实现大语言模型调用本地方法的能力。在MCP项目中,三个核心组件协同工作:McpRequest封装请求参数并提供类型安全转换;MCPResponse统一响应格式,支持成功/错误两种状态;BookingServiceFacade作为工具提供者,使用注解暴露方法并处理业务逻辑。典型流程是:AI通过注解识别方法→McpRequest解析参数→BookingService执行业务→MCPResponse封装结果,形成完整的工具调用闭环。该机制通过类型安全、

2025-08-16 06:45:00 593

原创 大模型开发 - Spring AI_MCP Server 基于约定实现动态工具注册

本文介绍了基于Spring AI 1.0.0构建的MCP Server项目,实现智能图书管理服务的技术架构。采用分层设计原则,包括数据模型层、业务服务层、MCP工具门面层和自动化配置层。核心创新点是通过@Tool注解将业务方法暴露为MCP工具,并利用约定优于配置原则实现工具的自动发现与注册。系统提供多维度图书检索、智能推荐等8种查询方式,支持模糊搜索和精确查询,通过@ToolParam注解增强AI理解能力。该架构具有声明式工具定义、参数语义化、调用链路追踪等技术特色,兼顾扩展性和易用性。

2025-08-16 04:45:00 700

原创 大模型开发 - Spring AI 工具调用:`internalToolExecutionEnabled` 的自动与手动模式解析

本文深入探讨了Spring AI框架中internalToolExecutionEnabled参数的核心作用,该参数决定了工具调用流程的控制权归属。手动模式(false)赋予开发者完全控制权,需编写循环逻辑处理工具调用、结果整合和上下文更新,适用于需要精细控制的复杂场景;自动模式(true)则交由框架全权处理,通过单次调用完成所有交互,大幅简化代码但灵活性较低。文章通过代码示例对比两种模式的工作流程,并从流程控制、代码复杂度、调试能力等维度进行详细比较,为开发者根据业务需求选择合适模式提供决策依据。

2025-08-15 06:00:00 761

原创 大模型开发 - 使用Spring AI和模型上下文协议(MCP)构建智能AI助手 (下)

本文介绍了基于Spring AI和模型上下文协议(MCP)构建智能AI助手的项目架构。项目包含三个核心模块:mcp-server(工具服务端)、mcp-client(基础客户端)和mcp-tool-client(带UI的复杂客户端)。重点解析了mcp-tool-client的分层架构设计,包括前端交互层、业务控制层和服务集成层。通过MCP协议实现AI模型与外部工具的标准化交互,配置文件中详细设定了OpenAI接口、MCP服务连接及开发环境参数。项目演示了如何构建可扩展的AI应用平台,支持工具发现、调用和可视

2025-08-15 04:45:00 952

原创 Shell - Spring Boot可视化服务管理运维脚本

本文介绍了一套基于Shell的SpringBoot服务可视化管理系统,旨在解决传统部署方式中操作繁琐、状态不明、日志分散等问题。该系统提供彩色终端界面集中管理多服务,支持智能启停、资源监控、日志查看和批量操作功能,并配套自动化部署脚本实现一键发布和安全回滚。通过配置驱动方式管理服务,结合健康检查与状态监控,显著提升了微服务场景下的运维效率和可靠性。文末还提供了完整的脚本实现,适用于单机多服务和小规模集群的管理需求。

2025-08-14 19:51:36 781

原创 大模型开发 - 基于Spring AI 的 MCP Server 开发(中)

本文介绍了MCP协议及其在AI应用开发中的应用。MCP协议作为连接LLM与外部数据源的标准化接口,由Anthropic公司发起并得到行业支持。文章详细解析了MCP Server的角色与功能,包括提供资源、工具和提示三种核心能力,并探讨了基于Spring AI框架开发MCP应用的两种方式:构建MCP客户端或服务器。最后通过图书管理系统案例,展示了如何利用Spring AI的MCP功能实现智能图书查询和推荐服务。该方案将图书服务方法通过@Tool注解暴露为AI可调用的工具,实现了AI与业务系统的深度集成。

2025-08-14 05:45:00 1301

原创 Maven - Spring Boot 项目打包本地 jar 的 3 种方法

本文介绍了在Spring Boot项目中引入本地JAR文件的解决方案。针对无法从仓库获取的第三方JAR,通过<scope>system</scope>声明依赖,配合maven-resources-plugin将JAR复制到BOOT-INF/lib目录,确保打包时能包含在最终的可执行JAR中。方案包含详细配置示例、构建流程图和验证步骤,适用于临时集成、离线部署等场景。同时指出system scope的局限性,建议长期方案应使用本地仓库或私服管理依赖。

2025-08-14 05:00:00 807

原创 Maven - Manual Maven JAR Installation:用 `mvn install:install-file` 安装本地 JAR 的实用指南

摘要: 本文介绍了使用Maven的install:install-file命令手动将本地JAR包安装到Maven仓库的方法。通过解析命令参数(如-Dfile、-DpomFile),说明如何将未发布到公共仓库的第三方库或私有组件(如示例polaris-1.0.jar)注册为本地依赖,并在项目中直接引用。对比其他方案(如system scope依赖)后,提出最佳实践:优先使用pomFile保留完整信息、搭建内部仓库管理团队依赖,并规范命名坐标。适用于临时依赖管理、本地库快速迭代等场景,确保构建灵活性与可复现性。

2025-08-13 20:42:22 566

原创 大模型开发 - 基于Spring AI 借助MCP Client 通过STDIO和SSE协议调用MCP Server (上)

MCP-Client是基于Spring AI框架的模型上下文协议客户端,采用分层架构设计,包含Web控制层、服务层、集成层和工具层。核心功能包括统一工具调用和上下文管理,技术栈基于Spring Boot 3.x和Spring AI。项目采用多模块结构,父工程管理依赖版本,子模块如mcp-client集成Spring Web和OpenAI模型支持。通过Mermaid图表展示了架构设计,并提供了Maven POM配置示例,适用于构建标准化AI应用开发框架。

2025-08-13 04:30:00 762

原创 Redis - 使用 Redis HyperLogLog 进行高效基数统计

摘要:本文介绍了如何在Spring Boot中使用Redis的HyperLogLog(HLL)实现高效基数统计。HLL是一种概率算法,能以约12KB内存估算大规模数据集的唯一元素数量,误差率约0.81%。文章详细讲解了HLL的工作原理、Spring Boot集成Redis的配置方法,并提供了完整的实战示例,包括日活跃用户统计、多日数据合并等功能实现。通过性能测试验证了HLL在10万级数据量下误差率仅0.56%左右,同时分析了适用场景(如用户分析、广告统计)和优化技巧(键名设计、管道批处理)。这种方案特别适合

2025-08-10 19:51:18 937

原创 Zread:把 GitHub 仓库“一键变说明书”的体验与实战指南

摘要: 智谱AI的Zread工具能够一键生成GitHub项目的结构化使用手册,显著提升代码仓库的可读性。该工具通过解析README、代码注释及配置文件,自动生成包含项目概览、安装指南、使用示例等模块的文档,并以目录树和可视化图表优化阅读体验。核心价值在于降低新手上手门槛,但需注意生成内容依赖源码质量,需人工验证步骤准确性。建议将Zread作为文档草稿工具,结合CI流程定期更新,并配套完善注释与示例以实现最佳效果。适用于技术审查、教程编写等场景,是提升开源项目可维护性的实用辅助方案。

2025-08-09 17:47:20 1078 1

原创 LLM - Agent意图识别精准度提升的综合方案与实践指南

摘要: 意图识别是智能代理的核心技术,涵盖规则匹配、传统机器学习、深度学习及大语言模型(LLM)等方法。规则匹配精准可控但灵活性差,传统机器学习在小样本场景有效但泛化能力弱,深度学习通过特征融合提升鲁棒性,而LLM虽泛化能力强但存在计算成本高和常识缺失的局限。实践表明,混合分层架构能结合各技术优势,分层处理高频与模糊意图。数据质量是精准度的关键,需注重多样性与均衡性,并通过少样本学习、元学习等方法应对数据稀缺。最终,意图识别需综合技术选型、数据优化与持续迭代,实现精准高效的交互体验。(150字)

2025-08-09 11:12:05 877

原创 LLM - AI大模型应用集成协议三件套 MCP、A2A与AG-UI

摘要: 随着大模型Agent化发展,业界推出三大协议解决核心痛点:1)MCP协议统一模型与外部工具/资源的交互接口,采用客户端-服务器模式;2)A2A协议规范多Agent间协作,通过Agent Card和标准化任务流程实现互通;3)AG-UI协议标准化Agent与用户界面的实时事件流交互。三协议可组合使用:MCP解决资源调用,A2A实现Agent协同,AG-UI优化人机交互。实施建议分步推进,优先集成MCP,再通过A2A构建多Agent系统,最后用AG-UI完善前端体验。(149字)

2025-08-03 22:39:24 1251

原创 LLM - 智能体工作流设计模式

《智能体系统六大核心工作流设计模式》详解了构建高效AI智能体的方法论。文章提出链式(线性任务拆解)、路由式(动态分流)、评估优化式(闭环迭代)、并行式(并发处理)、规划式(动态调整)和协作式(多智能体协同)六种模式,每种模式均配有典型应用场景和图示说明。这些模式可单独或组合使用,如"协作式+规划式"构建动态工作流平台。作者建议根据业务目标选择模式,定义标准接口,引入监控评估,并构建多智能体协同平台。该框架为开发者设计可维护、可扩展的智能体系统提供了系统化指导。

2025-08-03 22:28:18 1216

原创 每日一博 - 异步编程最佳实践

本文探讨了高并发场景下的异步编程实现方案。通过分析线程池、Future、CompletableFuture、Spring @Async、事件驱动、消息队列、响应式编程等技术的优缺点及适用场景,对比了阻塞IO与非阻塞IO的性能差异。文章还总结了回调地狱、上下文丢失等常见问题及其解决方案,并提供了性能压测数据,帮助开发者根据需求选择合适的异步处理方案,提升系统吞吐量和稳定性。

2025-08-03 21:54:19 852

原创 设计模式 - 组合模式:用树形结构处理对象之间的复杂关系

摘要 组合模式将对象组织成树形结构,统一处理整体与部分的关系。其核心包括抽象组件(定义接口)、叶子节点(无子项)和组合节点(管理子节点)。该模式适用于树形结构管理(如组织架构、文件系统)、跨层级统计等场景,客户端无需关心内部结构差异。示例展示了公司组织架构中递归统计人数和分配奖金的实现,体现了组合模式简化复杂层次操作的优点。MySQL B+树索引也采用类似结构,内部节点存储键,叶子节点存储数据指针,验证了该模式在高效数据管理中的实用性。

2025-08-03 21:23:26 974

原创 LLM - 构建“三层架构“的Agent开发框架

一个高效的Agent,必须具备“感知—决策—执行”三大核心层,彼此协同,构建类脑智能。

2025-07-31 05:45:00 1556

原创 LLM - 初探Agentic AI(自主型 AI)五种模式

摘要: Agentic AI(自主型AI)通过结构化设计提升大模型(LLM)的可靠性与执行能力,摆脱对提示词的过度依赖。文章提出五种核心模式: 反思(Reflection):模型自我检查输出质量; 工具调用(Tool Use):集成外部API增强实时数据处理; 推理+行动(ReAct):分步思考与执行循环; 规划(Planning):任务拆解与流程管理; 多智能体协作(Multi-Agent):分工协同完成复杂任务。 通过组合这些模式(如“AI研究助手”模板),开发者可构建稳定、可预测的智能系统,其核心在于

2025-07-31 04:45:00 1027

原创 Spring Boot + Jasypt:打造安全的应用配置管理

Jasypt是一个开源的Java加密库,旨在简化敏感数据的安全保护。文章介绍了Jasypt的核心特性,包括简单易用的API、支持多种加密算法、与Spring框架的无缝集成等。重点讲解了在Spring Boot项目中集成Jasypt的步骤:添加依赖、配置加密密钥、启用加密属性支持,并通过示例展示如何加密数据库密码等敏感信息。Jasypt能够以"ENC()"格式包裹加密值存入配置文件,运行时自动解密,既保证安全性又简化开发流程,是Java项目中保护敏感数据的理想选择。

2025-07-30 06:30:00 705

原创 SpringBoot - Bucket4j:分布式限流的“流速调节器”

Bucket4j:高性能Java限流库解析 Bucket4j是一个基于令牌桶算法的Java限流库,专为微服务和高并发系统设计。核心特性包括: 纯Java实现:轻量级无外部依赖,支持本地和分布式场景 灵活配置:可组合多种限流规则,支持突发流量和时间窗口控制 多后端支持:内置Redis、Hazelcast等分布式存储集成 双模式API:同步/异步调用满足不同性能需求 Spring集成:提供过滤器拦截和注解式限流方案 相比Guava RateLimiter等工具,Bucket4j在分布式场景和策略灵活性上更具优势

2025-07-30 04:45:00 1663

原创 SpringBoot - Zalando Logbook:Java 应用的 HTTP 请求/响应日志利器

Zalando Logbook是一款强大的Java库,专为HTTP请求/响应日志记录设计。它支持全面的请求与响应日志,包括请求体和响应体,并提供敏感数据混淆、条件过滤等定制功能。Logbook兼容多种主流技术栈(Servlet、Apache HTTP、OkHttp等),并支持Spring Boot自动配置。通过简单的依赖添加和配置,开发者可以快速集成该工具,实现高效的调试、审计和问题排查。其高度可扩展性使Logbook成为Java应用HTTP日志记录的理想解决方案。

2025-07-29 06:45:00 816

原创 SpringBoot - P6Spy 开箱即用:SQL 日志记录、格式化与监控高级配置

P6Spy是一个开源的JDBC代理库,能够拦截并记录实际执行的SQL语句(包含参数值)、执行时间等信息,便于开发者调试和分析数据库操作。它支持灵活集成方式,如通过Spring Boot Starter快速配置,或手动配置spy.properties文件。P6Spy可以输出完整SQL日志、执行耗时及操作类型,且对代码侵入性低,适用于调试、性能分析和生产监控等场景。其优势包括可定制的日志格式、过滤功能、堆栈追踪和JMX监控支持。

2025-07-29 05:15:00 957

原创 SpringBoot - ShedLock:分布式任务锁从入门到实战

ShedLock是一个轻量级的Java分布式锁工具,用于解决多实例环境下定时任务重复执行的问题。它通过Redis等外部存储实现锁协调,确保任务仅被一个实例执行。核心原理是利用@SchedulerLock注解声明任务锁,获取锁成功才执行任务。支持多种存储后端,集成简单,适合需要任务互斥但非强一致性的场景。使用Redis存储时性能较高,但需注意锁超时设置和时钟同步问题。相比完整调度框架,ShedLock更适用于简单的分布式定时任务控制。

2025-07-28 06:45:00 1009

原创 LLM - AI Agent 五大工作模式详解:构建智能体核心机制

在 AI Agent 的架构设计中,其工作模式决定了智能体如何规划、执行任务并优化自身行为。理解并掌握这些模式,是构建高效、智能 AI 系统的关键。提示链 (Prompt Chaining)路由 (Routing)并行化 (Parallelization)协调者-工作者 (Orchestrator-Workers)评估者-优化者 (Evaluator-Optimizer)并通过技术图解与实例,揭示它们的运作机制。Agent 能够根据当前任务和环境,自动选择并切换到最优的工作模式。

2025-07-28 05:15:00 1915

原创 LLM - ByteDance 开源「DeerFlow」深度研究多智能体框架_类Deep Research

字节跳动开源多智能体框架DeerFlow,提供多模态内容生产与音频播客生成能力。作为Gemini DeepMind的开源替代方案,DeerFlow支持多智能体协同工作,具备文本、图像、视频和音频处理功能。其核心优势包括深度研究智能体架构、开源社区支持及丰富应用场景,如自动化内容创作、智能辅导系统等。开发者可通过官网和GitHub获取资源,探索这一AI研究新工具。

2025-07-26 07:30:00 1052

原创 LLM - 从 Prompt Engineering 到 Context Engineering

上下文工程(Context Engineering)。与面向普通用户的提示词工程不同,上下文工程是面向开发者的系统技术,旨在为AI构建"心智世界",通过动态注入文档、历史对话等多种上下文,使大模型在长期任务中保持高效稳定。文章分析了AI智能体面临的四大上下文挑战(污染、干扰、混淆、冲突),并详细阐述了四大核心策略:写(持久化信息)、选(检索相关信息)、压缩(摘要与修剪)、隔离(拆分上下文空间)。最后指出上下文工程将成为AI智能体落地的关键技术,

2025-07-26 06:15:00 835

原创 LLM - Agent能力分级:L1→L2→L3

本文梳理了AI Agent技术演进的三个阶段:L1阶段的工作流Agent(2024)通过预设流程实现规则性任务自动化,但灵活性不足;L2阶段的推理Agent(2025)借助大模型自主规划任务步骤,具备动态闭环能力;未来的L3多智能体系统将实现跨域协同,重构企业运作范式。文章分析了各阶段的技术特点、应用场景与挑战,指出从单点自动化到群体智能的演进路径,为AI与业务深度融合提供了发展框架。三个阶段呈现智能化程度逐步提升、协作范围持续扩展的趋势,最终指向分布式自治的企业智能新生态。

2025-07-25 05:45:00 1211

原创 LLM - 初探Graph RAG 智能检索+图技术

摘要: Graph RAG通过结合知识图谱与检索增强生成(RAG),解决了传统RAG在多实体、多关系查询中的局限性。知识图谱的显式关系建模支持多跳推理和可追溯性,显著提升复杂问题的回答精度。技术架构分为查询理解、图结构检索、结果整合和增强生成四个阶段,对比传统RAG在知识表示、推理能力等方面更具优势。工具层面,Neo4j适合企业级应用,而轻量级Kùzu更适配实时AI场景。智能代理的引入进一步优化了多步推理和自适应检索。应用领域涵盖医疗、金融等,但面临图谱构建成本高、跨模态融合等挑战。未来,自动化图谱构建和混

2025-07-25 04:30:00 1066

原创 LLM - 分步演进:如何将 Workflow 打造成 AI Agent

摘要:本文探讨了从Workflow逐步升级到Agent系统的可行路径。相比直接构建复杂Agent系统,Workflow具有流程清晰、工程稳定、便于权限控制等优势。文章提出了四个演进阶段:节点增强、任务自动化、智能流程编排和多智能体协作,并对比了Function Call与MCP两种集成方式的差异。推荐采用三层演进策略:节点智能化、局部任务代理和引入Agent调度。通过客服流程、活动报名系统和电商订单处理三个案例,展示了不同阶段的实践效果,最终建议根据业务需求选择合适方案,多数企业更适合"具备Age

2025-07-24 05:45:00 1336

原创 LLM - 可视化原理理解 Transformer,快速理解大模型运行原理

摘要(147字) Transformer Explainer是佐治亚理工团队开发的交互式可视化工具,基于GPT-2模型逐层展示Transformer核心机制: 关键组件:通过动态流程图演示QKV检索比喻、多头注意力并行处理、位置编码及Encoder-Decoder结构; 交互功能:支持调节Temperature参数观察概率分布变化,并可分层查看数学细节; 核心优势:结合位置编码、残差连接和遮蔽机制,实现长程依赖捕捉与稳定训练。工具提供从输入到输出的全流程解剖,适合直观理解Transformer工作原理。配套

2025-07-24 04:45:00 996

原创 Vibe Coding - 探秘 system‑prompts‑and‑models‑of‑ai‑tools系统提示词

AI工具系统提示工程揭秘:从爆红仓库看Prompt设计精髓 GitHub仓库"system-prompts-and-models-of-ai-tools"因泄露6500+真实AI系统提示而爆红,涵盖Cursor、Devin等主流工具的原始配置。分析显示,优质系统提示具有四大特征:明确的角色边界定义、结构化指令格式(Markdown/XML)、内置安全协议及多轮反馈机制。该仓库不仅为Prompt工程提供实战范例,更揭示了AI产品的设计逻辑与安全风险——包括提示注入漏洞和合规隐患。项目价值在

2025-07-23 05:45:00 1027

原创 LLM - AI系统四阶:LLM、RAG、工作流与Agent对比

本文梳理了AI系统架构的演进路径:从纯LLM(大语言模型)到检索增强生成(RAG),再到AI工作流和AI Agent。以简历筛选为例,分析不同架构的特点:纯LLM简单但信息滞后,RAG引入外部知识库增强时效性,AI工作流实现流程自动化,AI Agent则具备自主决策能力。建议根据业务复杂度选择合适架构,优先保证可靠性,采用模块化设计便于扩展。AI系统开发需平衡能力与成本,从简单架构开始逐步迭代升级。

2025-07-23 04:15:00 1552

原创 Vibe Coding - context7-mcp 和 server-sequential-thinking

本文介绍了两种MCP(Model Context Protocol)服务的配置方法。Context7 MCP可实时获取最新技术文档,减少代码错误;Sequential Thinking MCP支持结构化问题分析,适用于复杂任务拆解。文章提供了在Gemini和Cursor编辑器中的具体配置方法,通过JSON格式说明参数设置。对比表格显示两者分别适用于开发效率和问题分析场景。建议同时启用这两个服务,以提升AI辅助编程的准确性和可控性,特别适合处理技术更新快和问题复杂的开发场景。

2025-07-22 06:00:00 927

原创 Vibe Coding - Gemini : API Error: exception TypeError: fetch failed sending request

本文介绍了如何在不同操作系统中配置代理环境变量。Windows用户可通过CMD或PowerShell设置HTTP/HTTPS代理(127.0.0.1:7897),其中PowerShell支持临时设置或通过setx永久生效。macOS/Linux用户则需在Bash/Zsh中执行export命令。最后提示需重新连接使配置生效。附带4张示意图分别展示代理端口查看、CMD配置、PowerShell设置及重新连接界面。

2025-07-22 04:30:00 512

原创 设计模式 - 桥接模式:实现抽象协议与不同实现的绑定

摘要: 桥接模式(Bridge)通过分离抽象与实现,使两者能独立演化。其核心在于将实体(AbstractEntity)与行为(AbstractBehavior)解耦,通过组合动态绑定,避免多重继承的耦合问题。代码示例展示了实体与行为的灵活组合(如DetailEntityA+DetailBehaviorB)。适用场景包括跨平台驱动、插件系统等,支持运行时切换实现。优点在于解耦与扩展性,但会增加类数量与设计复杂度。实践中可结合适配器、外观模式,优先通过二维矩阵明确分离维度。

2025-07-21 06:45:00 1046

原创 设计模式 - 适配器模式: 处理不同 API 接口的兼容性

适配器模式是一种结构型设计模式,用于解决接口不兼容问题。它通过将一个类的接口转换为客户期望的另一个接口,使原本无法协同工作的类能够一起工作。该模式包含三个角色:目标接口、适配器(实现目标接口并持有适配者引用)和具体适配者(原有不兼容接口的类)。适配器模式适用于接口不可修改、功能老旧或需要统一不同接口等场景,具有解耦目标与适配者、代码复用等优点,但也存在单继承限制和适配层臃肿等缺点。典型案例包括Type-C扩展坞和Java I/O中的InputStreamReader。该模式能在不改动原接口的前提下快速兼容扩

2025-07-21 05:15:00 1104

原创 LLM - 通过案例轻松理解MCP、Tool Calling、Agent

MCP(Model Context Protocol)是Anthropic公司提出的AI模型与外部工具交互的标准化协议,旨在解决传统LLM的孤立性、上下文丢失等问题。它基于JSON-RPC 2.0,支持双向通信和富上下文传输,具备安全控制和扩展性。MCP为Function Call提供统一接口,使AI能结构化调用工具,而Agent则基于MCP协调任务流程。典型应用场景包括智能助手整理日程、电商客服处理订单等,通过MCP实现跨工具的无缝协作,提升AI执行复杂任务的能力。

2025-07-19 11:42:15 1405

原创 Vibe Coding - 五步提升Claude Code开发效率

《五步流程玩转Claude Code:智能开发新范式》摘要 本文提出基于Claude Code的AI协同开发五步法:1)通过/init指令建立动态项目文档;2)生成PRD明确需求;3)智能拆解开发计划;4)自动化代码生成;5)可视化测试反馈。该流程通过持续上下文更新、三种作业模式切换(默认/计划/自动)实现全周期AI协同,可降低30%沟通成本,支持@图片反馈等特色功能。配套的指令速查体系进一步提升了开发效率,为智能编程提供了标准化实践框架。(150字)

2025-07-19 06:30:00 1038

原创 LLM - AI Workflow与MAS(Multi Agent System)

AI Workflow工具(如N8N、dify)通过图形化界面支持多智能体系统(MAS)开发,提供LLM、循环组件等核心功能实现协作模式。文章分析了六种典型协作模式:路由、顺序、主从、反思、辩论和群聊模式,并探讨了嵌套组合的可能性。尽管这些工具能有效支持多智能体协作,但仍面临异步交互、动态扩展等挑战。随着技术发展,AI Workflow有望成为构建复杂MAS的重要平台,提升AI系统的协作效率和灵活性。

2025-07-18 06:00:00 1670

Redis 8.0.3 是高性能的 Key-Value 缓存数据库,本版本为社区适配的 Windows 平台编译版本,适用于开发环境或测试用途

Redis 8.0.3 基于官方 Linux 源码移植编译,具有以下特点: 高性能:基于 IOCP(I/O Completion Ports)异步模型,充分利用多核和异步网络能力。 易部署:提供单一可执行文件,无需额外依赖,支持以服务模式运行。 开发友好:与 Linux 版本协议兼容,可在本地 Windows 环境进行功能测试与性能验证。

2025-07-12

版本 8.0.3 国产4种架构 x86arm64loongarchmips

## 8. 通用四种架构支持 ### 8.1 x86(Intel / AMD) * **架构类型**:标准 x86\_64(也兼容 x86\_32,编译时默认关闭 32 位) * **OS 支持**:主流 Linux 发行版(CentOS、Ubuntu、Debian)、Windows(社区版) * **编译选项**: ```bash make BUILD_TLS=openssl CFLAGS="-march=x86-64-v2 -O2" LDFLAGS="" ``` * **优化建议**: * 启用 `jemalloc`:`make BUILD_TLS=openssl MALLOC=jemalloc` * 开启 CPU 指令集优化:`-march=x86-64-v3` 或更高 * 调整 `tcp-backlog`(如 4096)与 `net.core.somaxconn` 系统参数 * **注意事项**: * Windows 社区版仅支持 x86\_64,可用命令行模式或服务模式运行 * 在老旧 CPU(不支持 AES-NI)上,AOF 加密和 SSL 性能会受影响

2025-07-11

国产 四种架构 Keepalived

国产 四种架构 Keepalived

2025-07-11

Redis 7.4.1 Windows 版本

Redis 7.4.1 Windows 版本

2024-10-10

「Tomcat源码剖析」.pdf

Tomcat源码剖析 : 整体架构 层层分析 源码解析 架构分析 (Http服务器功能:Socket通信(TCP/IP)、解析Http报文 Servlet容器功能:有很多Servlet(自带系统级Servlet+自定义Servlet),Servlet处理具体的业务逻辑)

2020-06-01

Scalable IO in Java

NIO - Scalable IO in Java

2023-11-10

腾讯万亿级 Elasticsearch 架构实践

腾讯万亿级 Elasticsearch 架构实践

2023-07-24

实时分析引擎&实时分析引擎

实时分析引擎

2023-07-24

MQ对比:Kafka VS Rocketmq VS Rabbitmq.pdf

MQ对比:Kafka VS Rocketmq VS Rabbitmq 超详细 ,值的收藏,参考资料

2019-11-04

elasticsearch-analysis-ik-6.4.1.zip

修改ik分词器源码,支持从mysql中每隔一定时间,自动加载新的词库

2019-08-20

中标龙芯-MIPS- NFS rpm包

gssproxy-0.7.0-4.ns7_4.mips64 keyutils-1.5.8-3. libbasicobjects-0 libcollection-0.6 libevent-2.0.21-4 libini_config-1.3 libnfsidmap-0.25- libpath_utils-0.2 libref_array-0.1. libtirpc-0.2.4-0. libverto-libeventm nfs-utils-1.3.0-0m quota-4.01-14.ns7 quota-nls-4.01-14 rpcbind-0.2.0-42. tcp_wrappers-7.6

2020-11-24

X86-NFS rpm包

gssproxy-0.7.0-21.el7.x86_64.rpm keyutils- libbasicobjects-0 libcollection-0.6 libevent-2.0.21-4 libini_config libnfsidmap libpath_utils-0.2 libref_array-0.1. libtirpc-0.2.4-0. libverto-libeventm nfs-utils-1.3.0-0m quota-4.01-14.ns7 quota-nls-4.01-14 rpcbind tcp_wrappers

2020-11-24

apache-tomcat-8.5.50-src.zip

Tomcat启动流程分析 组件的生命周期管理 用Lifecycle管理启动、停止、关闭 Lifecycle接口预览 几个核心方法 Server中的init方法示例 为啥StandardServer没有init方法 LifecycleBase中的init与initInternal方法 为什么这么设计? 分析Tomcat请求过程 链接器(Connector)与容器(Container) 解耦 Connector设计 监听服务端口,读取来自客户端的请求 将请求数据按照指定协议进行解析 根据请求地址匹配正确的容器进行处理 将响应返回客户端 Container设计 Servlet容器的实现。

2020-06-02

Nginx1.14.2 + zlib + pcre + openssl

1. nginx 主软件 和 3个依赖包 zlib + pcre + openssl

2019-03-12

mybatisSource.zip

MyBatis源码功能演示环境 ,演示MyBatis的Executor 、StatementHandler 、 SQL映射、对象转换 等核心功能

2020-06-14

Spring4CachingAnnotationsExample

Spring4CachingAnnotationsExample的示例,通过Java注解的方式整合EhCache框架

2017-10-04

Jest-5.3.4.zip

Jest是Elasticsearch 的Java Http Rest 客户端。 ElasticSearch已经具备应用于Elasticsearch内部的java API,但是Jest弥补了ES自有API缺少Elasticsearch Http Rest接口客户端的不足。 Jest 配置ES 集群 示例代码 及源码解读 - 核心原理 - NodeChecker源码解读 -

2020-01-19

Java反编译工具

jd-gui.exe使用C++开发,主要具有以下功能: 一、支持众多Java编译器的反编译; 二、支持对整个Jar文件进行反编译,并本源代码可直接点击进行相关代码的跳转;

2015-06-04

ORACLE_AWR报告详细分析

ORACLE_AWR报告详细分析

2016-09-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除