【算法历练】动态规划副本—路径问题

                                               🎬慕斯主页修仙—别有洞天

                                              ♈️今日夜电波:宙でおやすみ

                                                                1:02━━━━━━️💟──────── 2:45
                                                                    🔄   ◀️   ⏸   ▶️    ☰   

                                      💗关注👍点赞🙌收藏您的每一次鼓励都是对我莫大的支持😍


 

目录

62.不同路径

解题思路:

63.不同路径||

解题思路:

LCR 166.珠宝的最高价值

解题思路:

931.下降路径最小和

解题思路:

64.最小路径和

解题思路:


62.不同路径

62. 不同路径

        一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 109

解题思路:

1、状态表示:我们根据经验加题目要求,很明显的看出本题是一个二维数组的dp。对于二维dp我们可以按照以[i,j]为结尾时,巴拉巴拉 的模板来进行描述。本题的状态表示为:dp[i][j]表示:走到[i,j]位置时,一共有多少种方式。

2、状态转移方程:根据题意,我们按照最近的一步划分问题。可知有两种最近的一步,即:

因此,我们可以根据上述的思想写出状态转移方程:

3、初始化(重点):在这里需要根据状态转移表示进行初始化,根据上面的状态转移方程,我们可以知道如果直接初始化需要将dp[0][j]、dp[i][0]都等于1才能完成初始化。但是我们在这里多加一横多加一列来初始化,让初始化更简单,也是防止越界。可以根据下图理解:

4、填表顺序:从上往下,从左往右填写。

5、返回值:dp[i][j]

        因此我们写出如下题解:

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m+1,vector<int>(n+1));
        dp[0][1]=1;
        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m][n];
    }
};

63.不同路径||

63. 不同路径 II

        一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1

解题思路:

1、状态表示:我们根据经验加题目要求,很明显的看出本题是一个二维数组的dp。本题是上一题的拓展,只是多了一个障碍而已。本题的状态表示为:dp[i][j]表示:走到[i,j]位置时,一共有多少种方式。由于多了一个障碍,我们只需要加上一个判断:if(obstacleGrid[i-1][j-1]!=1)即可规避障碍。

2、状态转移方程:实际上还是和上一题一样的,即:dp[i][j]=dp[i-1][j]+dp[i][j-1];

3、初始化(重点):同上一题

4、填表顺序:从上往下,从左往右填写。

5、返回值:dp[i][j]

        因此我们写出如下题解:(需要注意我们的dp表是加了一行一列的,因此对于obstacleGrid要对应上需要横和列都-1)

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        vector<vector<int>> dp(obstacleGrid.size()+1,vector<int>(obstacleGrid[0].size()+1));
        dp[0][1]=1;
        for(int i=1;i<=obstacleGrid.size();i++)
        {
            for(int j=1;j<=obstacleGrid[0].size();j++)
            {
                if(obstacleGrid[i-1][j-1]!=1)
                {
                    dp[i][j]=dp[i-1][j]+dp[i][j-1];
                }
            }
        }
        return dp[obstacleGrid.size()][obstacleGrid[0].size()];
    }
};

LCR 166.珠宝的最高价值

LCR 166. 珠宝的最高价值

        现有一个记作二维矩阵 frame 的珠宝架,其中 frame[i][j] 为该位置珠宝的价值。拿取珠宝的规则为:

  • 只能从架子的左上角开始拿珠宝
  • 每次可以移动到右侧或下侧的相邻位置
  • 到达珠宝架子的右下角时,停止拿取

注意:珠宝的价值都是大于 0 的。除非这个架子上没有任何珠宝,比如 frame = [[0]]。

示例 1:

输入: frame = [[1,3,1],[1,5,1],[4,2,1]]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最高价值的珠宝

提示:

  • 0 < frame.length <= 200
  • 0 < frame[0].length <= 200

解题思路:

1、状态表示:我们根据经验加题目要求,很明显的看出本题是一个二维数组的dp。因此写出状态表示:dp[i][j]表示:到达[i,j]位置时,此时的最大值。

2、状态转移方程:根据题意,我们可知只能向左或者向右移动即:

每次移动都会拿珠宝,因此写出状态转移方程:

3、初始化(重点):我们多加上一横以及一列让初始化更简单,也是防止越界。根据题意,我们可以发现:要使dp表正确,我们仅需将dp[0][j]、dp[i][0]初始化为0即可,如下图示:

4、填表顺序:从上往下,从左往右填写。

5、返回值:dp[i][j]

因此我们写出如下题解:

class Solution {
public:
    int jewelleryValue(vector<vector<int>>& frame) {
        int n=frame.size();
        int m=frame[0].size();
        vector<vector<int>> dp(n+1,vector<int>(m+1));
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                dp[i][j]=max(dp[i-1][j],dp[i][j-1])+frame[i-1][j-1];
            }
        }
        return dp[n][m];

    }
};

931.下降路径最小和

931. 下降路径最小和

        给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径 最小和

下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。

示例 1:

输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:如图所示,为和最小的两条下降路径

示例 2:

输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:如图所示,为和最小的下降路径

提示:

  • n == matrix.length == matrix[i].length
  • 1 <= n <= 100
  • -100 <= matrix[i][j] <= 100


解题思路:

1、状态表示:我们根据经验加题目要求,很明显的看出本题是一个二维数组的dp。状态表示为:dp[i][j]表示: 到达[i,j]位置是,最小的下降路径。

2、状态转移方程:dp[i][j]=min(min(dp[i-1][j-1],dp[i-1][j]),dp[i-1][j+1])+matrix[i-1][j-1];如何d得出来的呢?我们可以从[i-1,j-1]->[i,j] [i-1,j]->[i,j] [i-1,j+1]->[i,j] 可以得出如下:

3、初始化(重点):根据题意,我们可以发现:要使dp表正确,我们需要多加一横以及两列,并且将最左的以及最右的两列初始化为最大,第一横初始化为0。(简化操作:现将全部初始化最大,第一横初始化为0)如下图所示:

4、填表顺序:从上往下

5、返回值:最后一横的最小值。

因此我们写出如下题解:

class Solution {
public:
    int minFallingPathSum(vector<vector<int>>& matrix) {
        int n=matrix.size(),m=matrix[0].size();
        vector<vector<int>> dp(n+1,vector<int>(m+2,INT_MAX));
        for(int i=0;i<m+2;i++)
        {
            dp[0][i]=0;
        }
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                dp[i][j]=min(min(dp[i-1][j-1],dp[i-1][j]),dp[i-1][j+1])+matrix[i-1][j-1];
            }
        }
        int min=INT_MAX;
        for(int j=1;j<=m;j++)
        {
            if(min>dp[n][j])
            min=dp[n][j];
        }
        return min;
    }
};

64.最小路径和

64. 最小路径和

        给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例 1:

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

示例 2:

输入:grid = [[1,2,3],[4,5,6]]
输出:12

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 200

解题思路:

1、状态表示:我们根据经验加题目要求,很明显的看出本题是一个二维数组的dp。dp[i][j] 表示:达到[i,j]位置,最小路径和。

2、状态转移方程: dp[i][j]=min(dp[i][j-1],dp[i-1][j])+grid[i-1][j-1];

3、初始化(重点):多加一横以及一列,我们需要保证里面的值要保证后面的值是正确的。因此我们将所有值都先初始化为最大值,再将dp[0][1]或者dp[1][0]初始化为0即可。后续也需要注意下标的映射关系。

4、填表顺序:从上往下,从左往右填写。

5、返回值:dp[i][j]

因此我们写出如下题解:

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int n=grid.size();
        int m=grid[0].size();
        vector<vector<int>> dp(n+1,vector<int>(m+1,INT_MAX));
        dp[0][1]=0;
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                dp[i][j]=min(dp[i][j-1],dp[i-1][j])+grid[i-1][j-1];
            }
        }
        return dp[n][m];
    }
};

 


                      感谢你耐心的看到这里ღ( ´・ᴗ・` )比心,如有哪里有错误请踢一脚作者o(╥﹏╥)o! 

                                       

                                                                        给个三连再走嘛~  

评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

慕斯( ˘▽˘)っ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值