数据结构(7)顺序表综合实战(寻找主元素、寻找未出现最小正整数)

本文介绍两种高效算法:一是通过遍历和计数找出数组中超过一半频率的主元素,二是利用额外空间快速找到数组中未出现的最小正整数。算法均考虑了时间和空间效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、

 

设计思路:

和普通的从一个数组中找出出现次数最多的一个数相比,这个题目有一个比较有巧劲的地方,题目需要找出的是整数序列中出现了一半以上的一个元素(主元素)。

①设置两个变量mainElem,flag; 取序列第一个元素给到mainElem,flag为当前元素出现的次数,记为1。

②依次遍历序列。当下一个元素仍未mainElem中的值的时候,flag加1,否则flag减一。当flag减到0的时候,将遇到的下一个元素赋值给mainElem。直到最后得出一个mainElem.

③从头再遍历一遍序列,检验第②步中得出的mainElem是否在序列中出现了n/2以上。若是则返回该元素(mainElem)。否则返回-1。

算法实现:

#include <iostream>

using namespace std;

int getMainElem(int *arr, const int len)
{
    int mainElem = 0, flag = 0;
    for (int i = 0; i < len; ++i)
    {
        if (flag < 0)
            return 99999999;
        else if (flag == 0) 
        {
            mainElem = *(arr + i);
            flag = 1;
        }
        else
        {
            if (mainElem == *(arr + i))
                ++flag;
            else
            {
                --flag;
                if (flag == 0)
                    mainElem = *(arr + i);
            }
        }
    }
    int num = 0;
    for (int i = 0; i <= len; ++i)
    {
        if (mainElem == *(arr + i))
            ++num;
        if (num > len / 2)
            return mainElem;
    }
    return -1;
}

int main()
{
    int arr[9] = { 0,6,6,2,6,1,6,16,6 };
    cout << getMainElem(arr, sizeof(arr) / sizeof(arr[0])) << endl;;
    return 0;
}

运行结果:

时间复杂度:O(n)

空间复杂度:O(1)

2、给定一个含n(n>=1)个整数的数组,请设计一个在时间上尽可能高效的算法,找出数组中未出现的最小正整数。例如,数组{-5,3,2,3}中未出现的正整数是1;数组{1,2,3}中未出现的最小正整数是4。要求:

1)给出算法的基本设计思路
2)根据设计思想。采用c或c++或Java语言描述算法,关键之处给出注释
3)说明你所设计算法的时间复杂度和空间复杂度
设计思路:

博主第一反应想到的是给所有正整数排个序,然后按照二分法查找,如果当n/2处的元素大于n/2,则最小正整数存在于前半段,否则存在于后半段。但是这样在时间上效率较低。而题目要求在时间上尽可能高效,我们就用空间换时间。

设原数组为A[n]。

①创建一个等长的B[n],初始化为0。

②依次遍历A[n],比较A[i]是否在[1,n]之间,如果是,则B[A[i]-1] = 1,否则不做处理。

③得到一个新数组B[n],顺次遍历数组B,如果第一个值为0的元素为B[m],则最小正整数为m+1。如果遍历完数组B均不为0,则最小正整数应该为n+1。

实现过程:

#include <iostream>

using namespace std;

int getMainElem(int *arrA, const int len)
{
    int *arrB = new int[len]{0};
    for (int i = 0; i < len; ++i)    
        if (arrA[i] > 0 && arrA[i] <= len)
            arrB[arrA[i] - 1] = 1;
    for (int i = 0; i < len; ++i) 
    {
        if (arrB[i] == 0)
            return i + 1;
    }
    return len + 1;
}

int main()
{
    int arr[9] = { -1,100,6,0,6,99,6,16,6 };
    cout << getMainElem(arr, sizeof(arr) / sizeof(arr[0])) << endl;;
    return 0;
}

运行结果:

时间复杂度:O(n)

空间复杂度:O(n)

 

 

人,总是要有一点精神的,不是吗

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值