1、
设计思路:
和普通的从一个数组中找出出现次数最多的一个数相比,这个题目有一个比较有巧劲的地方,题目需要找出的是整数序列中出现了一半以上的一个元素(主元素)。
①设置两个变量mainElem,flag; 取序列第一个元素给到mainElem,flag为当前元素出现的次数,记为1。
②依次遍历序列。当下一个元素仍未mainElem中的值的时候,flag加1,否则flag减一。当flag减到0的时候,将遇到的下一个元素赋值给mainElem。直到最后得出一个mainElem.
③从头再遍历一遍序列,检验第②步中得出的mainElem是否在序列中出现了n/2以上。若是则返回该元素(mainElem)。否则返回-1。
算法实现:
#include <iostream>
using namespace std;
int getMainElem(int *arr, const int len)
{
int mainElem = 0, flag = 0;
for (int i = 0; i < len; ++i)
{
if (flag < 0)
return 99999999;
else if (flag == 0)
{
mainElem = *(arr + i);
flag = 1;
}
else
{
if (mainElem == *(arr + i))
++flag;
else
{
--flag;
if (flag == 0)
mainElem = *(arr + i);
}
}
}
int num = 0;
for (int i = 0; i <= len; ++i)
{
if (mainElem == *(arr + i))
++num;
if (num > len / 2)
return mainElem;
}
return -1;
}
int main()
{
int arr[9] = { 0,6,6,2,6,1,6,16,6 };
cout << getMainElem(arr, sizeof(arr) / sizeof(arr[0])) << endl;;
return 0;
}
运行结果:
时间复杂度:O(n)
空间复杂度:O(1)
2、给定一个含n(n>=1)个整数的数组,请设计一个在时间上尽可能高效的算法,找出数组中未出现的最小正整数。例如,数组{-5,3,2,3}中未出现的正整数是1;数组{1,2,3}中未出现的最小正整数是4。要求:
1)给出算法的基本设计思路
2)根据设计思想。采用c或c++或Java语言描述算法,关键之处给出注释
3)说明你所设计算法的时间复杂度和空间复杂度
设计思路:
博主第一反应想到的是给所有正整数排个序,然后按照二分法查找,如果当n/2处的元素大于n/2,则最小正整数存在于前半段,否则存在于后半段。但是这样在时间上效率较低。而题目要求在时间上尽可能高效,我们就用空间换时间。
设原数组为A[n]。
①创建一个等长的B[n],初始化为0。
②依次遍历A[n],比较A[i]是否在[1,n]之间,如果是,则B[A[i]-1] = 1,否则不做处理。
③得到一个新数组B[n],顺次遍历数组B,如果第一个值为0的元素为B[m],则最小正整数为m+1。如果遍历完数组B均不为0,则最小正整数应该为n+1。
实现过程:
#include <iostream>
using namespace std;
int getMainElem(int *arrA, const int len)
{
int *arrB = new int[len]{0};
for (int i = 0; i < len; ++i)
if (arrA[i] > 0 && arrA[i] <= len)
arrB[arrA[i] - 1] = 1;
for (int i = 0; i < len; ++i)
{
if (arrB[i] == 0)
return i + 1;
}
return len + 1;
}
int main()
{
int arr[9] = { -1,100,6,0,6,99,6,16,6 };
cout << getMainElem(arr, sizeof(arr) / sizeof(arr[0])) << endl;;
return 0;
}
运行结果:
时间复杂度:O(n)
空间复杂度:O(n)
人,总是要有一点精神的,不是吗