Flink 实战 - 7.大规模状态 ValueState IO 实践与优化

本文探讨了Flink在使用ValueState + RocksDBStateBackend处理大规模状态时遇到的IO瓶颈问题。通过监控和分析,如iotop和iostat工具,识别了磁盘性能不足和负载不均匀等常见瓶颈。文章提出了负载均衡优化、调整TaskManager的localdir配置、切换到HashMapStateBackend等解决方案,以减少IO等待和提高吞吐量。最后,通过实际案例展示了优化效果,提升了任务运行效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.引言

工业场景下 Flink 经常使用 ValueState + RocksDBStateBackend 的组合,针对不断增大的 ValueState 或者数量过大的 ValueState,RocksDBStateBackend 使用了 TaskManager 所在机器的本地目录,从而突破 JVM Heap 的限制,满足了大量 ValueState 存储的场景,下面介绍大状态下 ValueState 的实践与优化。

二.ValueState + RocksDB 组合

1.IO 瓶颈

RocksDBStateBackend 使用了 TaskManager 本地目录,突破 JVM 限制实现了大规模状态的存储,但由于 RocksDB 的 JNI 序列化 API 基于 Byte[],因此每次获取状态都需要进行序列化与反序列化的操作,这使得 EmbeddedRocksDBStateBackend 不适应频繁大规模更新状态的作业,因为磁盘的 IO 会限制状态读取的性能:

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT_666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值