LLM - Qwen-VL 视觉模型初体验

目录

一.引言

二.环境准备

三.模型测试

1.模型 Load

2.模型 Chat

3.目标识别

四.总结


一.引言

随着语言 LLM 的崛起,多模态的图像、视频模型更迭的速度也在加快,今天尝试下 Qwen 最新的 Qwen-VL 多模态模型,官方文档介绍中 4-bit 量化版本并未有明显的性能下降,所以这里我们直接上 4-bit 量化模型搞起:

模型下载地址: https://huggingface.co/Qwen/Qwen-VL-Chat-Int4

二.环境准备

除了基础的 package 依赖需要更改外,还需到单独安装依赖库,主要是 AutoGPTQ:

pip install -r requirements.txt
pip install optimum

git clone https://github.com/JustinLin610/AutoGPTQ.git & cd AutoGPTQ
pip install -v .

下载前、下载后还有一些依赖的坑,所以除了上述依赖外,大家安装前首先保证安装如下两个 package:

pip install transformers_stream_generator
pip install gekko

三.模型测试

1.模型 Load

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
torch.manual_seed(1234)

use_int4 = True

if use_int4 == True:
    model_path = "/model/Qwen-VL-Chat-Int4"
else:
    model_path = "/model/Qwen-VL-Chat"

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

# use bf16
#model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", trust_remote_code=True, bf16=True).eval()
# use fp16
# model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", trust_remote_code=True, fp16=True).eval()
# use cpu only
# model = AutoModelForCausalLM.from_pretrained(model_path, device_map="cpu", trust_remote_code=True).eval()
# use cuda device
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="cuda", trust_remote_code=True).eval()

这里 4 bit 模型加载后大约需要 20G 显存,如果不想使用量化模型,也可以在 HF 上下载对应的原始 FP32 的模型。

2.模型 Chat

query = tokenizer.from_list_format([
    {'image': '/vision/cr7.jpg'},
    {'text': '这是什么'},
])
response, history = model.chat(tokenizer, query=query, history=None)
print(response)

通过图片与 Instruction 获取图像的理解: 

3.目标识别

# 2nd dialogue turn
response, history = model.chat(tokenizer, '输出"奖杯"的检测框', history=history)

print(response)
image = tokenizer.draw_bbox_on_latest_picture(response, history)
if image:
  image.save('1.jpg')
else:
  print("no box")

通过 "检测框" 的指令进行目标识别:

四.总结

实际测试下,一些简单的图像识别、标注任务量化版本与非量化版本差距不大,而且显存占用和推理速度都比较友好,有需要的同学可以上手试试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT_666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值