自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(139)
  • 收藏
  • 关注

原创 智能客服质检四维坐标:精准定位系统缺陷的树状决策地图

针对传统人工抽检覆盖率低的痛点,本文提出四层漏斗式质检框架,通过语音转写、意图判断、交互模式和答案有效性四大模块,将模糊的服务问题转化为精准优化坐标。文章详解了方言识别误判、语义丢失检测等实战规则设计,创新性引入上下文补救机制和动态知识监控,实现从问题归因(如ASR错误率与转人工率关联)到闭环优化的完整路径。该体系不仅能将质检覆盖率提升至100%,更通过量化指标(如转写准确率、多轮完成率)形成AI系统持续进化的导航图,让每次对话都成为优化燃料。

2025-07-10 09:54:40 1450

原创 三层架构设计:打造高效智能的客服知识库系统

在数字化服务时代,知识库已成为客服中心提升运营效率与用户体验的核心引擎。面对日益复杂的服务场景与智能化需求,构建一套高效、精准、可持续进化的知识库系统,成为企业客服团队的关键突破口。本文将系统性拆解知识库建设的实践路径与方法论。

2025-07-09 10:17:45 984

原创 KAMR 多因子意图引擎:医保场景下的精准业务导办系统

基于多因子的意图分类技术突破传统模型的局限,通过融合词法、句法、语义、领域知识等多维度特征,显著提升意图识别的准确性和鲁棒性。KAMRParser作为典型实现,采用多源特征提取、因子建模和智能融合机制,在医保等复杂场景中展现出精准的意图理解能力。该技术通过政策条款、用户身份、业务流程等因子的协同分析,有效解决政策复杂性、表述模糊性等挑战,实现意图准确率提升17.6%、业务转化率提升39%的显著效果。其多因子融合框架不仅增强模型可解释性,更为智能客服系统提供了类人化理解能力,是NLU领域的重要发展方向。

2025-07-08 09:50:12 888

原创 智能客服的情感引擎:从感知到共鸣的深度解析

情感分析技术正重塑智能客服体验,通过多模态情感检测(文本、语音、表情分析)、智能安抚策略(共情表达、个性化响应)和生成式语聊(情感化对话生成),实现从机械应答到情感交互的升级。该技术能精准识别用户情绪强度与类型,动态调整应对策略,有效化解负面情绪,提升服务温度。随着大模型发展,情感智能客服正突破传统模板化局限,但需平衡拟人化与伦理边界,确保数据隐私和安全。未来,融合感知-理解-决策的情感智能体将构建人机协作新范式,成为企业提升客户忠诚度的关键竞争力。

2025-07-03 08:04:52 1301

原创 智能质检的痛点破局:从问题识别到规则优化全解析

智能质检面临三大挑战:技术瓶颈(语音识别误差、多模态分析困难)、效率问题(人工抽检覆盖率不足5%)、管理痛点(主观偏差达30%)。解决方案采用ASR增强技术提升方言识别准确率至92%,构建多模态分析引擎(情绪+语义联动转化率提升47%),实施100%全量质检和三级预警机制(某电商投诉率降41%)。AI质检需覆盖准确性、解决率、合规性等维度,例如在退货场景中,通过意图识别和知识库比对发现21%的政策答复存在时效性问题。质检结果应形成闭环,驱动知识库更新和模型优化,实现服务质量的持续提升。

2025-07-03 08:02:46 1143

原创 多轮对话设计,如何借力客户心理与AI提升完成率与满意度?

客户在复杂咨询中经历目标驱动、信息确认和情绪积累三阶段,认知负荷与信任感成为关键因素。传统状态机对话管理面临状态爆炸和上下文脆弱挑战,需结合BERT/GPT语义理解、强化学习优化和知识图谱构建。有效设计需实现渐进式信息收集、动态上下文衔接和透明进度管理,某银行案例显示优化后多轮完成率提升21%。未来需向情感自适应、跨模态交互方向发展,在效率与人性化间找到平衡点。

2025-07-02 08:36:58 959

原创 智能客服演进之路:从关键词匹配到认知共情的服务革命

智能客服经历了四次技术跃迁:1)早期依赖关键词匹配的规则引擎时代;2)2010年代机器学习带来的意图识别突破;3)深度学习和知识图谱实现的多轮对话与业务流程自动化;4)当前LLM驱动的开放域理解与复杂推理能力。最新的大语言模型客服已能处理跨境纠纷、理财咨询等复杂场景,结合RAG技术提供个性化服务。未来将向多模态交互和深度情感计算演进,在解决效率与人性化服务间寻求平衡。

2025-07-01 08:47:44 852

原创 运营商智能化升级:破局客服、外呼、质检的“数智神经中枢”革命

电信运营商正面临智能化转型的关键节点。传统服务模式遭遇四大痛点:60%重复咨询消耗人力、高昂运营成本、用户体验不佳、数据价值沉睡。对此,运营商构建了;智能客服-外呼-质检;三位一体的解决方案:客服端运用LLM实现复杂业务导航,外呼采用AI精准营销,质检实现100%全量风控。典型案例显示,某运营商智能客服一次解决率提升22%,外呼转化率提高3倍,质检失误检出率增长40倍。未来趋势将打通数据闭环,构建具备自我进化能力的服务大脑;,推动运营商从成本中心转变为价值引擎。这场

2025-06-30 10:23:38 1319

原创 智能客服三大模型解析:扩展问数量如何因架构差异撬动90%匹配率?

智能客服系统效果受模型架构与扩展问策略双重影响。主流模型包括专用NLP模型(高准确但泛化弱)、LLMs(强生成需防幻觉)和知识图谱(强推理但成本高)。扩展问数量与效果呈非线性关系:20-30条/知识点时命中率达80-85%,过多易致冗余干扰。优化需结合置信度管理(>0.9直接回复,<0.7转人工)与动态知识库迭代,通过智能扩写工具和聚类分析平衡覆盖效率与答案精度。建议高频场景采用LLMs+适中扩展问,复杂场景用知识图谱+人工审核。

2025-06-26 15:30:08 1372

原创 合规视角下银行智能客服风险防控

我国《新一代人工智能发展规划》明确提出发展智能金融,要求:构建金融大数据平台,提升多媒体数据处理能力;创新智能金融产品与服务形态;推广智能客服、监控等技术应用;建立智能风控预警体系。

2025-06-26 10:35:13 653

原创 上万条对话白分析了?智能客服质检避坑指南:90%团队倒在这些误区

当前客服质检普遍存在投入产出失衡的现象,根源在于十大误区:过度关注单点技术指标而忽视端到端解决能力、僵化的话术模板限制AI应变、数据孤岛阻碍知识进化、盲目追求拟人化牺牲效率、传统整改机制跟不上机器速度等。破局需重构质检体系,包括建立决策树质检法、设计复杂问题测试集、构建实时数据闭环、重置AI专属评价指标、实施分钟级热修复机制等。关键在于将质检从被动纠错升级为主动赋能,通过根因分析、场景化反馈、标准化评分和数据驱动优化,打造"问题诊断-改进-验证"

2025-06-24 21:07:03 1130

原创 用 EXCEL/WPS 实现聚类分析:赋能智能客服场景的最佳实践

本文介绍如何利用Excel/WPS进行基础聚类分析,应用于智能客服场景。通过数据标准化、距离矩阵计算和层次聚类模拟,可识别用户群体和问题模式。文章详细演示了10个样本的聚类步骤,包括数据标准化、欧氏距离计算和业务解读,并给出VIP客户、高价值风险客户等分群策略。虽然Excel方案适用于小数据集,但推荐使用XLMiner插件或转向Python等专业工具处理更大数据量。该方法能帮助客服团队实现精准用户分群、问题归类和坐席优化,最终提升服务效率和质量。核心价值在于将技术结果转化为可落地的客服优化策略。

2025-06-23 22:36:18 992

原创 智能客服提效新范式:扣子工作流应用解析

扣子工作流(coze)作为低代码工具,可显著优化智能客服运营。其核心价值包括自动化流程处理、AI增强交互、多系统集成和实时数据分析。实践案例显示,该工具能实现自动工单分类分配(如通过NLP识别问题类型并通知对应团队)、智能FAQ问答增强(结合向量检索和LLM优化回答)、以及基于情绪分析的投诉升级处理。建议企业从小场景切入,结合AI与人工机制,持续迭代优化。扣子工作流能将传统客服升级为智能业务助手,有效提升服务效率与用户满意度。

2025-06-22 09:54:27 726

原创 coze工作流主要插件功能介绍

工作流是一种结构化任务执行框架,通过编排功能模块实现业务目标。它将复杂业务逻辑拆解为可管理的步骤,并整合大模型能力构建高效的AI应用解决方案。

2025-06-18 19:51:37 1215

原创 扣子工作流:重塑企业流程的智能引擎

扣子工作流是一款新一代智能工作流平台,帮助企业优化业务流程、提升运营效率。其核心功能包括动态流程引擎、自动化任务处理、多模态交互和智能知识库管理,支持灵活配置流程、自动执行任务、多方式交互和知识管理。适用于客户服务、项目管理、行政审批和供应链管理等全业务场景,实现高效协同与智能处理。平台具备强大的系统集成能力、智能数据分析功能和可靠的安全防护机制,助力企业数字化转型。扣子工作流通过一站式解决方案,有效提升企业效率、降低成本,成为数字化升级的可靠伙伴。

2025-06-16 17:11:54 976

原创 从数据洞察到精准施策:打造客户满意增长引擎

客户满意度数据是企业优化产品服务的重要依据。企业应明确分析目标,选择合适的指标(如CSAT、NPS、CES),多渠道收集数据并进行清洗整理。通过趋势分析、细分分析和文本挖掘等方法,识别问题与机会。数据可视化可增强洞察呈现,指导改进措施制定。持续监控效果并验证优化成果,形成闭环管理。注意事项包括确保数据代表性、合规性和行动导向性,同时促进跨部门协作,将分析结果转化为实际业务价值。

2025-06-13 15:13:11 872

原创 从碎片到系统:智能客服运营的思维升级之道

为什么优秀的客服运营都依赖系统思维?因为碎片化的管理只能解决表面问题,而系统思维能帮助企业从全局出发,优化各环节的联动效应,实现长效增长。通过系统化的运营策略,企业可以更精准地定位问题、提升客户体验,并促进组织高效协同。本文将从七大核心维度——全局视角、流程优化、数据驱动、跨部门协作、技术赋能、持续改进和客户导向,解析系统思维如何重塑客服运营。

2025-06-12 09:23:14 661

原创 数据驱动的首解率(FCR)指标优化

首解率(FCR,即首次接触解决率)是评估呼叫中心效能的核心指标之一,它衡量的是客户问题在初次联系时即被彻底解决的比例,无需再次跟进或转接他人。较高的首解率不仅能有效提升客户体验,还能减少运营开支并提振客服人员的工作士气。本文将详细解析首解率的战略意义,并聚焦如何借助数据洞察与流程优化来持续改进这一核心绩效指标。

2025-06-11 09:41:02 830

原创 从问答到认知:AI知识库在客服领域的应用演进

AI技术正在重塑客户服务行业,预计2026年市场规模将突破75亿美元。当前超过半数客服中心已部署AI系统,主要应用于智能应答、坐席辅助和质量监控三大领域。AI显著提升了服务效率(自动化处理80%常规咨询)、客户满意度(提升30%)和战略价值(推动客服中心向利润中心转型)。然而落地过程面临系统整合、人才短缺和ROI衡量等挑战。建议企业采取渐进式部署策略,构建多维评估体系,以实现AI技术的最大化价值。

2025-06-09 10:15:01 1022

原创 构建高效智能客服系统的8大体验设计要点

构建卓越客户服务中心需要以用户洞察为驱动,结合智能化技术与人文关怀。关键策略包括:通过多维数据分析建立精准客户画像,打造全渠道一致化服务体验;运用AI技术提升服务效率,实现80%常规咨询自动化处理;培养客服团队结构化沟通与情绪管理能力,适当授权以提升响应灵活性;优化流程实现零阻力服务,采用生物识别等技术简化验证步骤;建立闭环反馈机制,驱动服务持续迭代。最终形成科技与温度并重、效率与体验兼优的现代服务体系,实现客户忠诚度与商业价值的双重提升。(149字)

2025-05-30 14:14:46 793

原创 当客服遇见大模型:知识管理智能化转型

\面对传统客服知识管理存在的碎片化、滞后性等痛点,AI大模型正引发行业革命性变革。通过语义理解、多模态处理等能力,大模型实现从被动检索到主动推荐的跨越,使知识调用效率提升75%、首解率提高30%。典型应用包括实时对话辅助、智能知识库构建及员工培训优化,某商业银行实践显示新人上岗周期可缩短50%。实施需注重数据治理、系统集成与组织变革,未来将向多模态整合、预见性服务演进。这场变革不仅关乎技术升级,更是服务理念的重构,为企业在数字化竞争中创造新优势。

2025-05-30 11:17:09 1027

原创 AI大模型赋能客服中心:实施路径与关键策略

AI大模型正在重塑客户服务行业格局,为企业客服数字化转型提供创新解决方案。文章系统阐述了AI大模型在客服领域的完整应用路径:首先明确业务需求与量化目标,选择适配的AI模型;其次做好数据准备与系统集成,通过试点验证模型效能;然后持续优化训练,逐步扩大应用范围;最后建立长期运营机制。实施过程中需应对技术适配、品牌契合和成本控制等挑战,采用"敏捷试点、快速迭代"策略。通过科学的全生命周期管理,AI大模型可显著提升客服效率40%以上,降低运营成本30%,同时改善客户体验,实现服务数字化转型。

2025-05-29 10:54:23 1378

原创 从数据到行动:客服运营必分析的8大核心维度

服务运营正从被动响应升级为数据驱动型战略体系。客服中心的海量交互数据能精准反映服务效能、客户体验及运营短板,关键在于实现数据的可视化与可操作化。本文系统剖析了八类核心数据指标:1)客户行为数据(CSAT/NPS/投诉内容);2)通话效率指标(AHT/接通率);3)服务质量(质检体系/情绪识别);4)坐席绩效(FCR/客户评价);5)流程与知识库(转接率/工单时效);6)渠道流量分析;7)异常预警机制;8)成本收益模型。通过构建多维数据分析体系,企业可在客户全生命周期管理中实现服务升级、风险防控与资源

2025-05-29 10:12:36 691

原创 AI大模型如何对治幻觉

AI大模型有时候会"一本正经地胡说八道",这种现象在业内被称为"幻觉"。简单来说,就是AI会生成一些听起来头头是道,但实际上完全错误或者根本不存在的内容。比如你问AI某个历史人物的事迹,它可能会给你编造出一个栩栩如生但纯属虚构的人物生平,连出生日期、重要事件都说得有鼻子有眼。这种能力用在写小说可能不错,但放在需要准确信息的场合就麻烦了。

2025-05-28 10:09:47 1585

原创 智能客服,一定要做客户细分

客户分层与服务定制正重塑现代客户服务体系。通过价值分层(如VIP专属通道)、行为特征分析(如新客标准化流程)和动态画像构建,企业实现资源精准配置。实践显示,某互联网银行通过五级客群分类使满意度提升25%,某电商尊享会员复购率增长18%。数字化转型赋予分层新动能,如智能预警机制提升投诉处理效率20%。这种从被动响应到主动经营的服务进化,正成为企业提升客户忠诚与经营效益的核心竞争力。

2025-05-28 09:49:39 924

原创 2025年,智能质检够“智能”吗?

AI辅助智能质检系统通过机器学习实现100%自动化交互评估,取代传统人工抽检方式。该系统精准监测合规性和多维绩效,减少主观偏差,提升评估效率。同时能识别服务趋势和潜在问题,为客服提供实时个性化反馈,优化服务一致性。系统具备可扩展性,但需与现有平台整合并平衡人机协作,最终显著提升运营效率和客户体验。

2025-05-27 11:25:18 809

原创 从数据到决策:客服数据分析师核心素养

客服数据分析师的专业素养是其高效开展数据解析、赋能业务决策及驱动服务优化的核心支撑。卓越的客服数据分析师不仅需要具备扎实的技术功底,更应培养敏锐的业务洞察力,能够精准识别数据背后的业务痛点并提出切实可行的优化方案。基于客服行业的特性与需求,我们将系统性地探讨该岗位所需的关键能力素质。

2025-05-27 11:21:21 984

原创 客服中心大模型应用演进路线:从传统服务到超级智能助手的转型

本文详细解析了客服中心从传统模式向AI驱动智能服务的转型历程,基于“客服中心大模型应用演进路线图”,分为五个阶段:传统客服阶段(2020-2021)、智能化起步阶段(2022)、大模型初应用阶段(2023)、深度融合阶段(2024)和未来展望(2025+)。每个阶段都伴随着关键技术的突破,如FAQ自动管理系统、NLP意图识别、GPT集成、RAG知识检索等,逐步提升了客服系统的自动化处理率、响应速度和客户满意度。未来,客服中心将进化为“超级智能助手”,具备自主决策和跨系统协同能力,成为企业的利润增长点和客户体

2025-05-23 17:08:36 993

原创 “转人工客服”,少打弯弯绕!

与智能客服沟通答非所问,“鸡同鸭讲”;转人工需要层层点击、重重闯关;经历弯弯绕后,抵达人工客服,提示还需再排队……沟通效率降低,消费体验糟糕。智能客服本是为了解决问题,可如今常常成为问题本身。

2025-05-23 14:45:00 226

原创 10大实时聊天指标,提升客户服务质量2025(下)

文章摘要: 本文介绍了实时聊天中的关键绩效指标(KPI),包括首次联络解决率(FCR)、活跃聊天与错过聊天、反馈率、聊天弃置率、坐席利用率、队列等待时间、转化率和高峰聊天时间。这些指标帮助企业评估客户体验、坐席表现和运营效率。通过提高FCR率、减少错过聊天和聊天弃置率、优化坐席利用率和队列等待时间,企业可以提升客户满意度和服务效率。同时,识别高峰聊天时间和提高转化率有助于企业优化资源分配和提升销售业绩。有效利用这些指标,企业能够不断改进服务运营,增强客户忠诚度。

2025-05-22 14:14:09 1134

原创 10大实时聊天指标,提升客户服务质量2025(上)

实时聊天作为客服中心提供即时支持的重要工具,通过促进即时互动,提升了客户服务的效率、个性化和便捷性。为了充分发挥其价值,企业需量化评估其对客户体验的影响,实时聊天指标的监测与分析因此至关重要。这些指标帮助客服团队监控表现、优化流程,提升客户满意度。例如,首次联络解决率(FCR)衡量客户在第一次咨询时解决问题的比例,较高的FCR通常意味着更高效的客服和更满意的客户体验。实时聊天的核心优势包括个性化服务和高效便捷,能够快速响应客户需求,提升购物体验。通过持续监测实时聊天指标,企业能精准评估服务效果,优化客服团队

2025-05-22 14:10:30 371

原创 简单几步,DeepSeek直接生成智能客服数据化看板!

在数据驱动决策的背景下,高效、智能的数据可视化工具成为企业关注的焦点。国产大模型DeepSeek通过自动生成HTML可视化报告,推动了数据分析从静态展示向动态洞察的转变。用户只需在DeepSeek官网输入指令并上传数据,即可生成包含图表、数据洞察、业务解读和风险提示的HTML报告。报告不仅视觉美观、交互友好,还配备了专业解读和建议,帮助用户快速理解数据背后的业务逻辑和决策建议。DeepSeek支持多种图表形式,用户可根据需求调整生成内容,实现数据价值的深度释放。

2025-05-20 16:00:00 431

原创 2024基于AI与大数据的智能客服展望

在2024年的开端,客服行业的发展趋势预示着技术的前进和服务水平的飞跃。企业与客服人员需紧跟时代步伐,充分利用新兴技术,提供超越客户期待的服务。在此背景下,我们翘首以盼一个互动性更强、个性化更突出的客户服务未来。让我们携手并进,共同迎接充满挑战与机遇的新时代。新年快乐,愿您在新的一年里事业蒸蒸日上,前程似锦!

2024-01-13 17:49:20 2202

原创 多组件卡片式问答引擎

为了满足用户个性化需求以及精细化运营,越来越多的企业推出多组件式的卡片问答,这种回答方式不会千篇一律,能够更好地为客户提供服务,帮助客户解决问题。使用这种问答方式的企业如京东灵犀、招商银行小招客服、同花顺问财等,都获得过行业协会最佳实践荣誉与客户的认可。(下图为京东、小招客服、问财对应对话页面)1.1什么是卡片式问答引擎?我们在前文提到过FAQ、任务型、表格、知识图谱问答引擎(链接直达),这四个引擎更加注重在知识类别上做出区分。

2023-12-25 21:22:02 1489

原创 2023 客服中心客户体验的基本要素

在当今的市场竞争中,客户体验已经成为了企业成功的核心要素之一。客户对产品和服务的期望和需求日益增长,他们更加注重在购物、使用和售后过程中的感受和体验。因此,企业在满足客户需求的同时,也需要关注客户体验,不断提高服务质量和水平。

2023-12-25 20:37:49 1436

原创 客服机器人设计

客服机器人的设计与开发应该和其他应用软件设计开发一样,遵循应用软件设计开发流程。

2023-12-14 16:32:06 766

原创 案例课7——百度智能客服

百度智能客服是百度智能云推出的将AI技术赋能企业客服业务的一揽子解决方案。该方案基于百度世界先进的语音技术、自然语言理解技术、知识图谱等构建完备的一体化产品方案,结合各行业头部客户丰富的运营经验,持续深耕机场服务、电力调度等场景化解决方案,并通过数字员工等新的互动形态,帮助企业完成智能服务的基础设施建设,在AI时代领跑服务体验。百度智能客服集成了百度领先的AI技术能力,已为30000+企业客户提供服务,包括金融、运营商、能源、航司、政务、教育等多个行业,且在全国有了大规模覆盖。

2023-12-14 16:31:39 1717

原创 智能客服的应用——政务领域

数智化助力政务热线发展面对地方政务热线发展存在的种种挑战,数智化转型已成为热线系统突破当前发展瓶颈、实现整体提质增效的重要手段。

2023-12-13 14:25:23 1543

原创 基础课23——数据指标

如何评价一个智能客服的好坏?数据指标体系如何搭建?本文参考GB/T 21664-2008银行智能客服评价文件给出一些建议

2023-12-13 14:20:44 2475

原创 对话系统的架构实现

在这个全新的时代,我们创造出了4种连接方式:一是人和物品之间的连接;二是人与人之间的连接;三是人和信息之间的连接;四是人和设备之间的连接。但连接不是目的,它只是为交互提供相应的服务。对我们每一个人来说,最友好最自然的交流方式就是采用自然语言的方式进行交互。并通过自然语言的方式进行交互完成对话系统的设计与实现。

2023-12-12 14:31:54 948

2025客服运营数据指标

2025客服运营数据指标

2025-05-29

清华大学-虚拟人-研究报告

虚拟数字人定义:用数字化技术,打造具有逼真人类长相、语言、动作姿态、身体 特征的虚拟3D人体模型。 虚拟数字人是通过聚合科技创造的存在于虚拟世界, 且具有类“人”特质的数字形象。它是元宇宙中自然人进行 虚拟时空感知的主要载体,是实现人机融生交互的组成部分, 也是元宇宙的经济增值板块。虚拟数字人与自然人、机器人 共同组成了元宇宙的“三元”。 2016年-2020年,虚拟数字人投入 应用的产业规模增速约40%。 据此估算,2025年中国虚拟数字人 市场规模将超过1000亿元。 虚拟数字人核心企业中,虚拟数字人产品大多应用于B端 场景,例如帮助互联网商家实现全天候轮播的虚拟主播、 办事大厅内自助办理业务的虚拟前台、自动处理诉求的 虚拟客服等。即便资金门槛降低,虚拟数字人的制作成 本仍然过万,因此B端消费者仍是市场的主要组成部分。 • 虚拟数字人产品的C端应用场景仅占36%,例如上传照 片后重现逝去亲友的虚拟亲友、服务于儿童教育的虚拟 陪读、监管自媒体公众号的虚拟小编等。C端应用场景 仍有较大挖掘潜力。

2023-11-04

微软发布多模态大模型最全综述!.pdf

微软发布多模态大模型最全综述!.pdf

2023-10-26

AIGC行业深度报告-6存算一体

ChatGPT开启大模型“军备赛”,存储作为计算机重要组成部分明显受益: ChatGPT开启算力军备赛,大模型参数呈现指数规模,引爆海量 算力需求,模型计算量增长速度远超人工智能硬件算力增长速度,同时也对数据传输速度提出了更高的要求。XPU、内存、硬盘组成完整的 冯诺依曼体系,以一台通用服务器为例,芯片组+存储的成本约占70%以上,芯片组、内部存储和外部存储是组成核心部件;存储是计算机的 重要组成结构, “内存”实为硬盘与CPU之间的中间人,存储可按照介质分类为ROM和RAM两部分。  存算一体,后摩尔时代的必然发展: 过去二十年中,算力发展速度远超存储,“存储墙”成为加速学习时代下的一代挑战,原因是在后摩尔 时代,存储带宽制约了计算系统的有效带宽,芯片算力增长步履维艰。因此存算一体有望打破冯诺依曼架构,是后摩时代下的必然选择,存 算一体即数据存储与计算融合在同一个芯片的同一片区之中,极其适用于大数据量大规模并行的应用场景。存算一体优势显著,被誉为AI芯 片的“全能战士”,具有高能耗、低成本、高算力等优势;存算一体按照计算方式分为数字计算和模拟计算,应用场景较为广泛,SRAM、 RR

2023-10-21

AIGC行业深度报告-5计算服务器

大模型出现有望带动AI服务器需求爆发 我们认为ChatGPT具备跨时代的意义的本质是AI算法大模型,因此科技巨头已经开始算力“军备赛”,大模型的出现有望带动AI服务器 需求爆发。服务器架构随负载量扩张不断优化,已经经历传统单一部署与集群模式,目前正处于分布式模式的转变阶段。CPU、内部存储和外部 存储是服务器的核心部件。  加速计算是服务器成长的核心驱动力 按照CPU指令集架构的差异,服务器可分为CISC(复杂指令集)、RISC(精简指令集)、VLIM等架构,代表架构为X86。人工智能应用场景下的 加速计算服务器是中国服务器的核心驱动力,AI服务器相较于通用服务器区别在于硬件架构、加速卡数量与设计方面;我们认为AI服务器众芯片 组为服务器的核心,且价值成本占比较高。  算力时代到来,服务器价值再次凸显 我们认为服务器是“伴科技类”的硬件产品,随着科技的服务形式和应用方式不断进步,服务器同样在不断迭代升级或更新换代,近年 来随着互联网+、云计算、AI+、边缘计算的出现,服务器市场迎来了极大的发展;根据IDC的数据显示,国家计算力指数与GDP/数字经济的走势 呈现出了显著的正相关,而A

2023-10-21

AIGC行业深度报告-4百度文心一言

可控的“ChatGPT”。国产生态正在逐步繁荣,百度打响国产ChatGPT领域“第一枪”,其在算法、算力、数据、生态、平台五方面皆有储备; ChatGPT的竞争本质即大模型储备竞赛,大模型是人工智能发展的必然趋势,也是辅助式人工智能向通用性人工智能转变的坚实底座。大模 型分为NLP(自然语言处理)、CV(计算机视觉)、多模态和科学计算四类。此外,中美科技巨头已经开启大模型储备“军备赛”。  百度文心一言,开启国产ChatGPT新征程。百度是少有大模型语言训练能力的公司,模型储备方面,百度实现了全生态布局。1、 NLP(自然 语言处理),已经具备智能创作、摘要生成、问答、语义检索、情感分析、信息抽取等能力,且可以让机器人像人一样具有逻辑且自由对话; 2、 CV(计算机视觉),可用于应用于图像分类、目标检测、语义分割等场景,此外还可以应用于文档、卡证、票据等图像文字识别和结构化 理解;3、跨境大模型,可实现AI作画、场景融合视觉常识推理、跨模态图像检索、跨模态文本检索等多场景;4、生物计算,应用场景为蛋 白结构预测和小分子药物研发等领域。  百度为国产ChatGPT“领军企业”,具有算

2023-10-21

AIGC行业深度报告-3算力

ChatGPT:OpenAI史诗级“AI”新品,开启新一轮的科技革命 1)史诗级“AI”新品。ChatGPT自发布以来,仅2个月用户量迅速增长至亿级,是AI产业的史诗级“颠覆性创新”产品,我们预计其用户量 潜在空间10亿级,假设人均订阅价格20美元/月,其对应的商业价值量将极其广阔。同时,ChatGPT母公司OpenAI估值亦迎来翻倍式增长,根 据华尔街日报,其最新估值达290亿美元,预计2023年收入2亿美元。 2)开启新一轮科技革命。ChatGPT的成功得益于NLP、Transformer、GPT、强化学习等AI相关模型和技术的突破,其在对话、知识反馈等 方面已远超过普通人类水平,更将颠覆搜索、智能客服、智慧教学、电子媒体等千行百业,比尔盖茨评论其意义不亚于“PC或互联网诞生“。 当前,ChatGPT的第一浪已经开始,AI技术方向已然明确,更宏大的AI浪潮即将奔涌而来。  AI算力:ChatGPT核心基座,新AI“军备竞赛”的最受益赛道 1)算力是AI技术角逐“入场券”。AI算力是ChatGPT模型训练与产品运营核心基础设施,ChatGPT的诞生将对科技产业的格局和商业模式 形成

2023-10-21

AIGC行业深度报告-2(ChatGPT: 重新定义搜索“入口”)

ChatGPT的一小步,AI的一大步: ChatGPT(AIGC)的出现使AI从感知理解世界到生成创造世界的跃迁,AIGC出现前的人工智能更偏向于分 析,例如目前最火热的个性化推荐算法,ChatGPT(AIGC)出现后的人工智能更具备“拟人化”,可以自主的创造文本、图像、视频、3D交 互内容,以及包括开启科学新发现、创造新价值和意义,因此Gartner将生成性AI列为2022年5大影响力技术之一,MIT科技评论也将AI 合成数据列为2022年十大突破性技术之一。  ChatGPT(AIGC)正处于时代变革之中: 如果AI推荐算法是内容分发的强大引擎,AIGC则是数据与内容生产的强大引擎,我们认为其影响 行业包括社交媒体、游戏、编码设计、平面设计等,原因是AIGC有望把内容创造的边际成本降至零,从而产生庞大的劳动力,换句话说, AIGC的关键影响因素在于以降低成本和自动化的方式生成内容,从而重塑内容身生产的供给模式。

2023-10-21

AIGC行业深度报告-1商业化

ChatGPT 付费版本落地,AIGC 应用商业化在即 OpenAI推出其人工智能聊天机器人ChatGPT的付费订阅版本,人 工智能生成内容(AIGC)应用开始进入稳定商业化阶段。 ChatGPT 能够在大部分领域与人类进行持续的语言交互,落地即 成为历史上增长最快的消费应用,瑞银数据显示其月活跃用户已 达 1 亿,本周付费订阅版的推出进一步打开 AIGC 应用在 ToC 领 域的商业化空间。目前微软已将其纳入必应搜索引擎,在办公软 件 Teams 内推出 AI 会议纪要、邮件撰写等付费功能。 AIGC 已经具备落地应用条件,在开源平台的支持下,目前进入 壁垒更多存在于数据量及算力成本。我们认为短期内 AIGC 的应 用意义集中于辅助生产、为内容创作降本增效,从产品来看,AI 绘画、AI音频、AI写作等领域目前均有成熟应用涌现,B端广泛 变现即将开启。

2023-10-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除