自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(59)
  • 收藏
  • 关注

原创 【python深度学习】Day 59 经典时序预测模型3——SARIMA

知识点SARIMA模型的参数和用法:模型结果的检验可视化(昨天说的是摘要表怎么看,今天是对这个内容可视化)多变量数据的理解:内生变量和外部变量多变量模型统计模型:SARIMA(单向因果)、VAR(考虑双向依赖)机器学习模型:通过滑动窗口实现,往往需要借助arima等作为特征提取器来捕捉线性部分(趋势、季节性),再利用自己的优势捕捉非线性的残差深度学习模型:独特的设计天然为时序数据而生一、模型介绍1.SARIMA模型介绍相对于ARIMA,SARIMA模型将季节性差分引入到模型中。

2025-07-04 21:19:01 541

原创 【python深度学习】Day 58 经典时序预测模型2---ARIMA

建立一个ARIMA模型,通常遵循以下步骤:1. 数据可视化:观察原始时间序列图,判断是否存在趋势或季节性。2. 平稳性检验:- 对原始序列进行ADF检验。- 如果p值 > 0.05,说明序列非平稳,需要进行差分。3. 确定差分次数 d:- 进行一阶差分,然后再次进行ADF检验。- 如果平稳了,则 d=1。否则,继续差分,直到平稳。4. 确定 p 和 q:- 对差分后的平稳序列绘制ACF和PACF图。- 根据昨天学习的规则(PACF定p,ACF定q)来选择p和q的值。

2025-07-03 11:27:00 647

原创 【python深度学习】Day 57 经典时序模型1

非平稳性(趋势) -> 使用差分 (.diff())- 季节性 -> 使用季节性差分 (.diff(periods=s))- 自相关性 -> 不消除,而是利用 ACF/PACF图 来为后续的模型选择提供线索。- 截尾 (Cut off):ACF或PACF图在某个延迟之后,相关系数突然变得非常小,几乎都在置信区间内。- 拖尾 (Tail off):相关系数随着延迟增加而缓慢、指数级地衰减,而不是突然截断。- 如果ACF截尾,PACF拖尾 -> 考虑 MA(q) 模型。

2025-07-02 14:00:19 856

原创 【python深度学习】Day 56 时序数据的检验

一组数据的均值,方差不会随时间改变而改变时间序列中,以固定的、已知的频率重复出现的模式或周期性波动季节性是数据中最强大、最明显的预测信号之一。如果一个模型不能识别和利用季节性,它的预测结果将会出现系统性的、周期性的巨大误差。

2025-06-23 18:03:54 906

原创 【python深度学习】Day 55 序列预测任务介绍

这篇文章介绍了序列预测的基本概念和实现方法。主要内容包括: 序列预测的两种类型:单步预测和多步预测(包括递归式和直接式两种多步预测方式) 序列数据的处理方法:滑动窗口技术,将连续时间序列转化为监督学习格式 多输入多输出(MIMO)任务的思路 经典机器学习模型在序列任务上的局限性 文章通过代码实例演示了如何生成合成时间序列数据、正确划分数据集并进行标准化预处理,以及使用滑动窗口技术构建序列预测所需的输入输出对。最后提到可以观察不同机器学习模型在序列预测任务上的表现差异。

2025-06-19 16:14:34 848

原创 【python深度学习】Day 54 Inception网络及其思考

Inception 网络,也被称为 GoogLeNet,是 Google 团队在 2014 年提出的经典卷积神经网络架构。它的核心设计理念是 “并行的多尺度融合”,通过在同一层网络中使用多个不同大小的卷积核(如 1x1、3x3、5x5)以及池化操作,从不同尺度提取图像特征,然后将这些特征进行融合,从而在不增加过多计算量的情况下,获得更丰富的特征表达。Inception 模块是 Inception 网络的基本组成单元。在同样的步长下,卷积核越小,下采样率越低,保留的图片像素越多;

2025-06-15 18:25:05 933

原创 【python深度学习】Day53 对抗生成网络

对抗生成网络(GAN)摘要 GAN由生成器与判别器组成,通过对抗训练提升生成能力。生成器将随机噪声转化为样本,判别器区分真实与生成数据。采用nn.Sequential简化网络结构,LeakyReLU避免神经元失活。在心脏病数据集不平衡样本中,使用GAN生成病人样本可提升分类器F1分数。典型应用包括图像/文本生成和数据增强,改进模型如WGAN、CGAN等进一步拓展了应用场景。(149字)

2025-06-14 22:50:24 416

原创 【python深度学习】DAY 52 神经网络调参

本文总结了神经网络调参的核心要点:1)随机种子管理是实验可复现的关键,需控制Python、NumPy、PyTorch和cuDNN的随机性;2)合理的参数初始化可避免梯度消失/爆炸并加速收敛;3)调参分三阶段:基础训练→性能优化→抑制过拟合,建议顺序为参数初始化→batch size→epoch策略→学习率与调度器→模型结构→损失函数→激活函数→正则化。重点强调预训练参数的价值、Adam+调度器的优化组合,以及先追求过拟合再提升泛化的调参策略。作业要求应用此指南优化简单CNN模型的精度。

2025-06-13 16:40:15 850

原创 【python深度学习】DAY 51 复习日

nn.ReLU(),return xfrom tqdm import tqdm # 可视化训练进度# 设置训练使用的设备CPU/GPU# 模型训练# 训练阶段# 测试阶段total = 0# 保存最佳模型total = 0。

2025-06-11 18:06:31 158

原创 【python深度学习】Day 50 预训练模型+CBAM模块

冻结部分: 冻结 ResNet18 的所有主干卷积层 (`conv1`, `bn1`, `layer1` 至 `layer4`)。冻结部分: 底层特征提取层 (`conv1`, `bn1`, `layer1`, `layer2`) 仍然冻结。- 给专家设置一个极低的学习率(例如 `1e-5`),告诉他们:“保持现状,根据实习生的表现稍作微调即可。解冻部分: 在上一阶段的基础上,额外解冻高层语义相关的卷积层 (`layer3`, `layer4`)。1. 阶段一 (Epoch 1-5): 预热“实习生”

2025-06-10 23:14:16 434

原创 【python深度学习】Day 49 CBAM注意力

定义带有CBAM的CNN模型# ---------------------- 第一个卷积块(带CBAM) ----------------------self.bn1 = nn.BatchNorm2d(32) # 批归一化self.cbam1 = CBAM(in_channels=32) # 在第一个卷积块后添加CBAM# ---------------------- 第二个卷积块(带CBAM) ----------------------

2025-06-09 17:45:28 445

原创 【python深度学习】Day 48 PyTorch基本数据类型与操作

本文摘要:PyTorch深度学习基础知识点包含张量操作和广播机制。张量是基本数据类型,常用torch.randn生成随机张量,可指定size、dtype等参数。广播机制允许不同形状张量运算(如加减乘),通过自动调整维度实现兼容:从右到左逐维比较,1的维度可扩展,不足维度左侧补1。作业建议借助AI示例理解。

2025-06-08 18:07:52 638

原创 【python深度学习】Day 47 注意力热图可视化

摘要:本文介绍了卷积神经网络特征图可视化的方法。主要内容包括:1)概念解释,说明浅层与深层特征图的尺寸差异;2)实施步骤:模型评估模式设置、数据加载处理、钩子注册捕获特征图、前向传播特征提取、可视化呈现;3)关键细节:特征图布局(原始图像左侧,各层特征图右侧)、通道选择(默认前9个)、显示优化(嵌入网格、标题分离、色彩还原)。可视化过程有助于观察不同卷积层的输出特征。

2025-06-07 18:56:59 428

原创 【python深度学习】Day 46 通道注意力(SE注意力)

知识点:不同CNN层的特征图:不同通道的特征图什么是注意力:注意力家族,类似于动物园,都是不同的模块,好不好试了才知道。通道注意力:模型的定义和插入的位置通道注意力后的特征图和热力图内容参考作业:今日代码较多,理解逻辑即可对比不同卷积层特征图可视化的结果(可选)ps:我这里列出来的是通道注意力中的一种,SE注意力为了保证收敛方便对比性能,今日代码训练轮数较多,比较耗时。

2025-06-06 22:59:15 465

原创 【python深度学习】Day 45 Tensorboard使用介绍

之前在神经网络训练中,为了帮助自己理解,借用了很多的组件,比如训练进度条、可视化的loss下降曲线、权重分布图,运行结束后还可以查看单张图的推理效果。tensorboard这个库,集成了以上所有可视化工具。

2025-06-05 23:40:33 941 1

原创 【python深度学习】Day 44 预训练模型

修改最后一层全连接层# 调整第一层卷积以适应CIFAR-10的32x32图像# 6. 训练函数(支持阶段式训练和早停)"""前freeze_epochs轮冻结卷积层,之后解冻所有层进行训练当测试集准确率连续early_stop_patience轮未提升时触发早停"""# 早停相关变量# 初始冻结卷积层# 早停检查print(f"触发早停: 在第 {best_epoch} 轮后测试准确率没有提升")break# 解冻控制:在指定轮次后解冻所有层。

2025-06-04 18:21:15 370

原创 【python深度学习】Day43 复习日

摘要:本文构建了一个基于CNN和Grad-CAM的猫狗分类模型。使用1000多张不同尺寸的猫狗图片,经过数据增强和预处理后,构建了一个含残差连接的卷积神经网络。模型采用交叉熵损失函数和Adam优化器,实现20轮训练,并加入学习率调度和早停机制。训练结果显示验证准确率稳定提升。最后通过Grad-CAM可视化技术展示模型关注区域,验证了模型有效性。该方法在保持较高准确率的同时,提供了可解释的决策依据。

2025-06-02 23:39:53 578

原创 【python深度学习】Day 42 Grad-CAM与Hook函数

本文摘要介绍了深度学习中的回调机制与可视化技术。主要内容包括:1)回调函数的作用及特点,强调其解耦逻辑和事件驱动特性;2)Lambda函数的匿名特性及其在Hook中的运用;3)PyTorch的两种Hook机制,用于获取模型中间层信息;4)Grad-CAM算法原理,通过梯度加权实现CNN决策过程可视化。这些技术为模型调试和可解释性提供了重要工具,其中回调机制实现了灵活控制,Grad-CAM则直观呈现关键特征区域。作业要求理解相关代码实现。

2025-06-01 22:56:13 393

原创 【python深度学习】Day 41 简单CNN

知识回顾数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率卷积操作常见流程如下:1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层2. Flatten -> Dense (with Dropout,可选) -> Dense (Output)一、数据增强在图像数据预处理环节,为提升数据多样性,可采用数据增强(数据增广)策略。

2025-05-31 18:58:55 714

原创 【python深度学习】Day 40 训练和测试的规范写法

仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout。展平操作:除第一个维度batchsize外全部展平。图片测试和训练的规范写法:封装在函数中。

2025-05-30 23:20:24 494

原创 【python深度学习】Day 39 图像数据与显存

先归一化,再标准化transforms.ToTensor(), # 转换为张量并归一化到[0,1]transforms.Normalize((0.1307,), (0.3081,)) # MNIST数据集的均值和标准差,这个值很出名,所以直接使用])# 2. 加载MNIST数据集,如果没有会自动下载# 定义两层MLP神经网络self.flatten = nn.Flatten() # 将28x28的图像展平为784维向量。

2025-05-29 17:50:20 1055 1

原创 【python深度学习】Day38 Dataset和Dataloader类

Dataset类的__getitem__和__len__方法(本质是python的特殊方法)了解下cifar数据集,尝试获取其中一张图片。minist手写数据集的了解。Dataloader类。

2025-05-27 22:22:32 222

原创 【python深度学习】Day 37 早停策略和模型权重的保存

对信贷数据集训练后保存权重,加载权重后继续训练50轮,并采取早停策略。保存全部信息checkpoint,还包含训练状态。过拟合的判断:测试集和训练集同步打印指标。DAY 37 早停策略和模型权重的保存。2.第一次训练(不使用早停)3.第二次训练(使用早停)

2025-05-26 23:13:42 157

原创 【python深度学习】Day36 复习日

对之前的信贷项目,利用神经网络训练下,尝试用到目前的知识点让代码更加规范和美观。回顾一下神经网络到目前的内容,没跟上进度的同学补一下进度。:尝试进入nn.Module中,查看他的方法。

2025-05-25 23:37:45 188

原创 【python深度学习】Day 35 模型可视化与推理

本文回顾了三种模型可视化方法,重点推荐使用torchinfo打印模型摘要和权重分布。介绍了手动和自动两种进度条实现方式,使输出更美观。讲解了模型推理时的评估模式设置方法,并布置了调整模型超参数并对比效果的实践任务。

2025-05-24 23:23:51 465

原创 【python深度学习】Day34 GPU训练及类的call方法

类的call方法:为什么定义前向传播时可以直接写作self.fc1(x)GPU训练的方法:数据和模型移动到GPU device上。CPU性能的查看:看架构代际、核心数、线程数。GPU性能的查看:看显存、看级别、看架构代际。

2025-05-23 18:43:08 199

原创 【python深度学习】Day 33 简单的神经网络

1. 分类任务中,若标签是整数(如 0/1/2 类别),需转为long类型(对应 PyTorch 的torch.long),否则交叉熵损失函数会报错。这里定义一个简单的全连接神经网络模型,包含一个输入层、一个隐藏层和一个输出层。2. 回归任务中,标签需转为float类型(如torch.float32)。这已经是最简单最基础的版本了。查看显卡信息的命令行命令(cmd中使用)数据预处理(归一化、转换成张量)(1) 定义损失函数和优化器。3.模型训练(cpu版本)(0)准备数据、划分数据。(2) 转化数据类型。

2025-05-22 23:58:25 218

原创 【python进阶知识】Day32 官方文档的阅读

面对一个全新的官方库,借助官方文档的写法了解其如何使用。3. 官方文档:https://pdpbox.readthedocs.io/en/latest/1. GitHub 仓库:https://github.com/SauceCat/PDPbox。2. PyPI 页面:https://pypi.org/project/PDPbox/参考pdpbox官方文档中的其他类,绘制相应的图,任选即可。官方文档的阅读和使用:要求安装的包和文档为。官方文档的检索方式:github和官网。绘图的理解:对底层库的调用。

2025-05-21 23:13:01 226

原创 【python进阶知识】Day 31 文件的规范拆分和写法

命名参考:preprocess.py 、data_cleaning.py 、data_transformation.py。- 命名参考:eda.py 、visualization_utils.py。- 命名参考:load_data.py 、data_loader.py。- 命名参考:predict.py 、inference.py。- 模型评估:用合适指标评估模型在测试集上的性能,生成报告。- 命名参考:model.py 、train.py。- 模型训练:构建模型架构,设置超参数并训练,保存模型。

2025-05-20 23:04:16 240

原创 【python基础知识】Day30 模块和库的导入

学习python = 学习python基础语法 + 处理任务需要用到的库一、导入官方库的三种手段。

2025-05-19 23:17:17 393

原创 【python基础知识】Day29 类的装饰器

知识点回顾类修改器的逻辑:接收一个类,返回一个修改后的类。修改内柔如下:29天总结:1. Python基础语法-数据类型:列表、字典、集合、元组的使用- 循环语句 : for 循环(如累加1-100)、 while 循环- 条件语句 : if-elif-else 结构(如温度预警判断)- 函数定义 : def 关键字定义函数(如 debug_example() 函数) 类的定义:class - 字符串格式化 :f-string的使用(如 print(f"平均分数: {aver

2025-05-18 23:14:50 820

原创 【python基础知识】Day 28 类的定义和方法

calculate_perimeter():计算周长(公式:2×(长+宽))。is_square() 方法,判断是否为正方形(长 == 宽)。calculate_circumference():计算圆的周长(公式:2πr)。shape_type="rectangle":创建长方形(参数:长、宽)。calculate_area():计算圆的面积(公式:πr²)。shape_type="circle":创建圆(参数:半径)。calculate_area():计算面积(公式:长×宽)。

2025-05-17 23:28:09 173

原创 【python基础知识】Day 27 函数专题2:装饰器

func.__name__ :按照pep8的约定,在一个变量前后都加上两个下划线代表着这是一个Python内置的变量,是自动创建的。作用返回 func 的名称更详细的可以问AI。编写一个装饰器 logger,在函数执行前后打印日志信息(如函数名、参数、返回值)装饰器的思想:进一步复用。注意内部函数的返回值。

2025-05-16 23:17:12 840

原创 【python基础知识】Day26 函数

函数是一段具有特定功能的、可重用的语句组,用函数名来表示。在需要使用函数时,通过函数名进行调用。函数也可以看作一段具有名字的子程序,可以在需要使用它的地方进行调用执行,不需要在每个执行的地方重复编写这些语句。每次使用函数时,可以提供不同的参数作为输入,以实现对不同的数据处理;函数执行后,可以反馈相应的处理结果。函数能够完成特定的功能,与黑盒类似,对函数的使用不需要了解函数内部实现原理,只要了解函数的输入输出方式即可。严格地说,函数是一种功能的抽象。有些函数是python自带的,如print();

2025-05-15 22:34:31 1288

原创 【python机器学习】Day 25 异常处理

当程序在运行时遇到意外情况(即异常),程序不会直接崩溃,人们可以通过 try-except 优雅地处理这些错误,并可能继续执行后续逻辑(如果设计允许)或以可控的方式结束。借助ai写代码的时候,经常会遇到try-except的异常处理模块,这是因为大部分大模型在后训练阶段都是经过强化学习训练的,为了确保结果的正确运行,只有采取 try-except的异常处理模块才能提高模型运行成功的概率。在即将进入深度学习专题学习前,我们最后差缺补漏,把一些常见且重要的知识点给他们补上,加深对代码和流程的理解。

2025-05-14 21:02:16 205

原创 【python机器学习】Day24 元组和OS模块

对自己电脑的不同文件夹利用今天学到的知识操作下,理解下os路径。

2025-05-13 18:10:32 163

原创 【python机器学习】Day23 pipeline管道

ColumTransformer的核心# --- 定义不同列的类型和它们对应的预处理步骤 ---# 这些定义是基于原始数据 X 的列类型来确定的# 识别原始的 object 列 (对应你原代码中的 discrete_features 在预处理前)# 识别原始的非 object 列 (通常是数值列)# 有序分类特征 (对应你之前的标签编码)# 注意:OrdinalEncoder默认编码为0, 1, 2... 对应你之前的1, 2, 3...需要在模型解释时注意。

2025-05-12 22:22:09 1155

原创 【python机器学习】Day 22 复习总结

自行学习参考如何使用kaggle平台,写下使用注意点,并对下述比赛提交代码。仔细回顾一下之前21天的内容,没跟上进度的同学补一下进度。

2025-05-11 23:01:33 107

原创 【python机器学习】Day 21 降维方法总结

机器学习常见降维方法PCA主成分分析t-SNE(t-LDA线性判别Kernel LDA(核线性判别分析)---有监督、非线性。

2025-05-10 19:14:30 241

原创 【python机器学习】Day 20 特征降维---SVD奇异值分解

SVD (或其变种如 FunkSVD, SVD++) 可以用来分解这个矩阵,发现潜在因子 (latent factors),从而预测未评分的项。结构化数据中,将原来的m个特征降维成k个新的特征,新特征是原始特征的线性组合,捕捉了数据的主要方差信息,降维后的数据可以直接用于机器学习模型(如分类、回归),通常能提高计算效率并减少过拟合风险。在进行 SVD 之前,通常需要对数据进行标准化(均值为 0,方差为 1),以避免某些特征的量纲差异对降维结果的影响。线性代数可不必在意,推导可以不掌握,只关注输入输出即可。

2025-05-09 22:53:46 471

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除