Introduction to Meta-Learning and Lifelong Learning in AIGC Models
In the rapidly evolving landscape of artificial intelligence (AI), models such as Autoencoder-Generative Adversarial Networks (AIGC) have gained significant attention due to their ability to generate high-quality content. These models, however, face a critical challenge: how to efficiently learn and adapt to new tasks over time. This is where meta-learning, also known as “learning to learn,” comes into play. Meta-learning aims to enhance the learning process by developing models that can quickly adapt to new tasks with minimal additional training.
What is Meta-Learning?
Meta-learn