Agentic AI智能健康项目需求分析:从0到1构建智能健康助手的8个关键步骤
关键词
Agentic AI(智能体AI)、智能健康、需求分析、用户旅程、场景建模、伦理合规、数据策略、系统交互
摘要
当AI从“被动响应”进化到“主动服务”,Agentic AI(智能体AI)正在重新定义智能健康的边界——它不再是“你问我答的健康助手”,而是“能主动感知、推理、行动的健康管家”:比如监测到糖尿病患者餐后血糖超标,会主动提醒散步15分钟;发现高血压患者睡眠质量差,会推荐助眠方案并调整用药提醒时间。
但要让Agentic AI真正落地智能健康领域,需求分析是最容易被忽视却最关键的第一步。本文结合Agentic AI的核心特性(自主性、交互性、适应性),总结了8个关键步骤,帮你从0到1梳理智能健康项目的需求逻辑:从用户画像到场景建模,从伦理合规到数据策略,从Agent能力设计到系统架构,每一步都有可操作的方法、生动的例子和避坑指南。无论你是AI产品经理、健康领域创业者,还是想进入智能健康的技术从业者,这篇文章都能帮你搭建完整的需求分析框架,让Agentic AI真正解决用户的核心痛点。
一、背景介绍:为什么Agentic AI是智能健康的未来?
1.1 智能健康的“痛点”与“机会”
根据《中国2030健康规划纲要》,我国有3亿慢性病患者(糖尿病、高血压、慢阻肺等),1.8亿老年人(其中40%有慢性病),而医疗资源的供需矛盾日益突出:医生人均服务患者数超过1000人,难以实现“个性化、实时化、长期化”的健康管理。
传统智能健康系统的问题在于**“被动性”**:
- 用户需要主动输入数据(比如手动记录血糖);
- 系统只能提供通用建议(比如“糖尿病患者要少吃糖”);
- 无法根据用户状态动态调整(比如用户今天运动量大,系统不会主动建议增加饮食量)。
1.2 Agentic AI的“破局点”
Agentic AI(智能体AI)的核心是**“主动服务”**:它具备“感知-推理-行动-学习”的闭环能力,能像人类管家一样,主动关注用户的健康状态,做出个性化决策。
比如,一个针对糖尿病患者的Agentic AI健康助手:
- 感知:通过智能手表、血糖仪自动收集血糖、心率、运动数据;
- 推理:用机器学习模型预测“餐后1小时血糖会超标”(基于用户的饮食记录、运动习惯);
- 行动:提前10分钟发送提醒“您等下要吃米饭,建议搭配蔬菜,避免血糖飙升”;
- 学习:根据用户反馈(比如“这个建议有用”)优化未来的推荐策略。
这种“主动式、个性化、闭环式”的服务,正好解决了传统智能健康系统的痛点。
1.3 本文的目标读者与核心问题
目标读者:AI产品经理、智能健康项目需求分析师、健康领域创业者、Agentic AI技术开发者。
核心问题:如何通过需求分析,将Agentic AI的特性与智能健康的用户需求结合,构建一个“有用、好用、安全”的智能健康助手?
二、核心概念解析:Agentic AI与智能健康的“化学反应”
在进入需求分析步骤前,我们需要先理清两个核心概念:Agentic AI和智能健康的核心需求。
2.1 Agentic AI:像“管家”一样的AI
如果把传统AI比作“超市收银员”(你问他价格,他告诉你),那么Agentic AI就是“家庭管家”(他会主动帮你规划购物清单、提醒你买牛奶、根据你的口味调整菜单)。
Agentic AI的核心特性可以用“4个A”概括:
- Autonomy(自主性):不需要人类指令,能主动感知环境(比如用户的血糖数据);
- Adaptability(适应性):能根据用户反馈调整行为(比如用户讨厌语音提醒,就切换为文字);
- Actionability(行动性):能执行具体动作(比如发送提醒、预约医生、调整用药计划);
- Learning(学习性):能从数据中学习,不断优化服务(比如越用越懂用户的饮食偏好)。
2.2 智能健康的核心需求:“3个P”
智能健康的用户(患者、老年人、健康管理人群)的核心需求可以总结为“3个P”:
- Personalized(个性化):不同用户的健康状况、生活习惯不同,需要定制化建议(比如糖尿病患者和高血压患者的饮食建议完全不同);
- Proactive(主动性):不需要用户主动查询,系统能提前预警(比如“你明天要出差,记得带降压药”);
- Persistent(持续性):健康管理是长期过程,需要系统持续跟踪(比如“你最近3个月血糖控制得很好,继续保持”)。
2.3 Agentic AI与智能健康的“结合点”
Agentic AI的“4个A”正好匹配智能健康的“3个P”:
- 自主性→主动性(主动感知用户状态);
- 适应性→个性化(根据用户习惯调整建议);
- 行动性→持续性(持续执行健康管理动作);
- 学习性→个性化+持续性(越用越懂用户,持续优化服务)。
三、Agentic AI智能健康项目需求分析的8个关键步骤
接下来,我们进入核心环节:8个关键步骤,帮你从0到1梳理Agentic AI智能健康项目的需求。
步骤1:用户画像与需求分层——找到“真正的用户”
1.1 为什么要做?
Agentic AI的核心是“个性化”,如果不知道用户是谁、需要什么,就无法设计出有效的服务。比如,针对“糖尿病患者”和“健康年轻人”的Agentic AI,功能和交互方式完全不同:
- 糖尿病患者需要“实时血糖监测、用药提醒、饮食建议”;
- 健康年轻人需要“健身计划、睡眠监测、压力管理”。
1.2 怎么做?
第一步:定义用户角色(Who)
通过用户访谈、问卷调研、数据统计,识别核心用户群体。比如,某智能健康项目的用户角色可能包括:
- 角色1:中年糖尿病患者(40-60岁,有高血压并发症,每天需要测3次血糖,经常忘记用药);
- 角色2:老年高血压患者(60岁以上,独居,不会用复杂设备,需要简单的语音提醒);
- 角色3:健康职场人(25-35岁,久坐,睡眠不足,需要运动和饮食建议)。
第二步:挖掘用户痛点(What)
针对每个用户角色,用“5W1H”方法挖掘痛点:
- Who:中年糖尿病患者;
- When:餐后1小时;
- Where:家里/办公室;
- What:血糖超标;
- Why:吃了米饭,没运动;
- How:希望系统提前提醒“少吃米饭,搭配蔬菜”。
第三步:需求分层(Priority)
将需求分为“核心需求”(Must Have)、“次要需求”(Should Have)、“潜在需求”(Could Have):
- 核心需求:糖尿病患者的“实时血糖监测、用药提醒”;
- 次要需求:“饮食建议、运动计划”;
- 潜在需求:“并发症风险预测、医生预约”。
1.3 例子:中年糖尿病患者的用户画像
维度 | 内容 |
---|---|
基本信息 | 50岁,男性,公务员,独居,有高血压并发症 |
健康状况 | 糖尿病史5年,每天需要测3次血糖(空腹、餐后1小时、睡前),偶尔忘记用药 |
使用习惯 | 会用智能手机,但不喜欢复杂操作,偏好语音提醒 |
核心痛点 | 1. 餐后血糖容易超标;2. 忘记用药;3. 不知道该吃什么 |
核心需求 | 1. 实时血糖监测与提醒;2. 用药提醒;3. 个性化饮食建议 |
1.4 避坑指南
- 不要“假设用户需求”:比如认为年轻人喜欢语音交互,但实际上很多职场人更偏好文字提醒(避免在办公室打扰别人);
- 不要“覆盖所有用户”:聚焦核心用户(比如先做糖尿病患者,再扩展到高血压患者),避免需求分散。
步骤2:场景建模与用户旅程映射——让Agent“懂场景”
2.1 为什么要做?
Agentic AI的“主动性”需要基于具体场景。比如,同样是“血糖超标”,在“餐后1小时”和“凌晨3点”的处理方式完全不同:
- 餐后1小时:提醒用户散步15分钟;
- 凌晨3点:可能是低血糖(反跳性高血糖),需要提醒用户测血糖,并准备含糖食物。
如果没有场景建模,Agent可能会给出错误的建议,导致用户体验差甚至危险。
2.2 怎么做?
第一步:识别核心场景(Scene)
通过用户访谈和行为分析,找出用户最常遇到的健康场景。比如,糖尿病患者的核心场景包括:
- 餐后血糖监测;
- 用药提醒;
- 运动后的血糖变化;
- 出差/旅游时的健康管理。
第二步:绘制用户旅程地图(Journey Map)
用“场景-触发条件-用户目标-Agent动作-预期结果”的框架,梳理每个场景的用户旅程。比如,“餐后血糖监测”场景的用户旅程:
维度 | 内容 |
---|---|
场景名称 | 餐后1小时血糖监测 |
触发条件 | 用户吃完午饭(通过智能手表的运动传感器判断“停止进食”) |
用户目标 | 避免血糖超标 |
Agent动作 | 1. 从血糖仪获取当前血糖值;2. 用模型预测“未来30分钟血糖变化”;3. 如果预测超标,发送提醒:“您餐后1小时血糖为8.5mmol/L,建议散步15分钟,30分钟后再次测量” |
预期结果 | 用户血糖下降到正常范围(<7.8mmol/L) |
第三步:定义场景规则(Rule)
为每个场景制定明确的规则,比如:
- 餐后1小时血糖≥7.8mmol/L:发送高血糖提醒;
- 凌晨3点血糖≥6.1mmol/L:发送“反跳性高血糖”提醒,建议测糖化血红蛋白;
- 运动后血糖≤4.4mmol/L:发送低血糖提醒,建议吃15g含糖食物。
2.3 例子:用Mermaid画用户旅程流程图
2.4 避坑指南
- 不要“忽略场景细节”:比如“出差”场景需要考虑用户的饮食变化(比如吃外卖)、用药时间(比如时区差异);
- 不要“过度设计场景”:聚焦用户最常遇到的2-3个核心场景(比如餐后血糖监测、用药提醒),避免场景过多导致Agent逻辑复杂。
步骤3:伦理与合规边界定义——守住“安全底线”
3.1 为什么要做?
智能健康项目涉及用户隐私(比如健康数据)、医疗责任(比如建议是否准确),如果没有伦理与合规边界,可能会导致:
- 数据泄露(比如用户的血糖数据被第三方获取);
- 医疗纠纷(比如Agent建议“停止服用降压药”,导致用户病情加重);
- 法律风险(比如违反《个人信息保护法》《医疗数据安全管理规范》)。
3.2 怎么做?
第一步:明确“不能做”的事情(Forbidden)
根据医疗法规(如HIPAA、GDPR、《个人信息保护法》),定义Agent的“禁止行为”:
- 不能给出诊断结论(比如“你得了糖尿病”);
- 不能推荐未经批准的药物(比如“你可以吃XX保健品降血糖”);
- 不能泄露用户隐私数据(比如将用户的血糖数据分享给第三方);
- 不能替代医生决策(比如“你不需要去医院,我帮你调整用药”)。
第二步:定义“需要用户授权”的行为(Authorization)
对于涉及用户隐私或医疗风险的行为,必须获得用户授权:
- 收集用户的健康数据(比如血糖、血压);
- 发送主动提醒(比如“你最近血糖控制得不好,要不要看看医生?”);
- 分享数据给第三方(比如医院、保险公司)。
第三步:制定“风险应对流程”(Response)
对于可能出现的风险,制定明确的应对流程:
- 如果Agent给出错误建议(比如“你可以吃西瓜”,但用户是糖尿病患者),需要立即发送纠正消息,并记录错误原因;
- 如果用户数据泄露,需要立即通知用户,并采取补救措施(比如加密数据、更换服务器);
- 如果用户出现紧急情况(比如低血糖昏迷),需要立即拨打120,并通知用户的紧急联系人。
3.3 例子:Agent的“禁止行为”列表
禁止行为 | 原因 |
---|---|
给出诊断结论 | 违反《医疗机构管理条例》,Agent没有医生资质 |
推荐未经批准的药物 | 违反《药品管理法》,可能导致用户病情加重 |
泄露用户隐私数据 | 违反《个人信息保护法》,可能导致用户名誉或财产损失 |
替代医生决策 | 医疗责任风险,比如用户因Agent建议停止用药而出现并发症 |
3.4 避坑指南
- 不要“模糊边界”:比如“建议用户吃某种食物”和“推荐药物”的边界要明确,避免越界;
- 不要“忽视用户授权”:比如收集用户的健康数据时,必须让用户明确同意(比如勾选“我同意收集我的血糖数据”),而不是默认同意。
步骤4:数据策略与资产规划——让Agent“有饭吃”
4.1 为什么要做?
Agentic AI的“推理能力”依赖于数据,就像人类管家需要知道你的饮食偏好、生活习惯才能提供好的服务。如果没有数据,Agent就是“瞎子”:
- 没有血糖数据,Agent无法提醒用户“血糖超标”;
- 没有饮食数据,Agent无法给出“个性化饮食建议”;
- 没有运动数据,Agent无法预测“运动后的血糖变化”。
4.2 怎么做?
第一步:明确“需要收集的数据”(What)
根据用户需求和场景,确定需要收集的数据类型:
- 健康数据(核心):血糖、血压、心率、睡眠、糖化血红蛋白;
- 行为数据(辅助):饮食记录、运动记录、用药记录、吸烟/饮酒习惯;
- 环境数据(补充):天气(比如雨天建议用户室内运动)、地理位置(比如出差时建议用户吃当地低糖食物);
- 用户反馈数据(优化):用户对建议的评价(比如“这个建议有用”“这个建议没用”)。
第二步:确定“数据来源”(Where)
数据来源包括:
- 用户主动输入:通过APP输入饮食、用药记录;
- 设备采集:通过智能手表、血糖仪、血压计自动收集数据;
- 第三方数据:从医院、体检中心获取用户的检查报告;
- 公开数据:从疾控中心获取的慢性病流行数据(比如某地区糖尿病患病率)。
第三步:制定“数据治理方案”(How)
数据治理是确保数据质量和安全的关键,包括:
- 数据清洗:去除无效数据(比如血糖仪误报的“0mmol/L”);
- 数据标注:给数据打标签(比如“高血糖”“睡眠不足”“运动过量”);
- 数据脱敏:去除个人识别信息(比如将用户姓名替换为“用户A”,身份证号替换为“***”);
- 数据存储:选择安全的存储方式(比如加密云存储、本地加密存储);
- 数据共享:制定数据共享规则(比如只能与用户授权的医院共享数据)。
4.3 例子:数据收集与治理流程
flowchart LR
A[用户主动输入(饮食、用药)] --> B[设备采集(血糖、血压)]
B --> C[第三方数据(医院报告)]
C --> D[数据清洗(去除无效数据)]
D --> E[数据标注(打“高血糖”标签)]
E --> F[数据脱敏(去除个人信息)]
F --> G[加密存储(云+本地)]
G --> H[数据共享(用户授权的医院)]
4.4 避坑指南
- 不要“收集无关数据”:比如收集用户的购物记录(与健康无关),会增加数据安全风险;
- 不要“忽视数据质量”:比如血糖仪的误差率超过10%,会导致Agent给出错误建议;
- 不要“忘记数据脱敏”:比如将用户的血糖数据与姓名关联,会违反《个人信息保护法》。
步骤5:Agent能力设计与交互逻辑——让Agent“会做事”
5.1 为什么要做?
Agentic AI的核心是“能力”,如果Agent没有足够的能力,就无法完成用户的需求。比如,一个糖尿病患者的Agent需要具备:
- 感知能力:能从血糖仪、智能手表收集数据;
- 推理能力:能预测血糖变化;
- 行动能力:能发送提醒、建议;
- 学习能力:能根据用户反馈优化建议。
5.2 怎么做?
第一步:定义Agent的核心能力(Capability)
根据用户需求和场景,确定Agent的核心能力:
- 感知能力(Perception):整合多源数据(设备、用户输入、第三方);
- 推理能力(Reasoning):用机器学习模型(比如LSTM预测血糖变化)和规则引擎(比如“餐后1小时血糖≥7.8mmol/L→提醒散步”)进行决策;
- 行动能力(Action):通过APP、语音、短信发送提醒、建议、预约;
- 学习能力(Learning):用强化学习(比如根据用户反馈调整建议权重)优化模型。
第二步:设计交互逻辑(Interaction)
交互逻辑要“自然、简单、符合用户习惯”,比如:
- 主动推送:在用户需要的时候发送提醒(比如“你明天要出差,记得带降压药”);
- 语音交互:适合老年人(比如“小A,我今天血糖多少?”);
- 可视化交互:适合年轻人(比如APP上显示血糖趋势图);
- 反馈机制:让用户能轻松反馈(比如“这个建议有用”→点击“赞”;“这个建议没用”→点击“踩”)。
第三步:制定Agent的“性格”(Personality)
Agent的“性格”会影响用户体验,比如:
- 针对老年人:Agent应该“温柔、耐心”(比如“阿姨,您今天的血糖有点高,要不要我帮您找个低糖食谱?”);
- 针对年轻人:Agent应该“活泼、简洁”(比如“兄弟,你昨天熬夜了,今天要记得早点睡哦!”)。
5.3 例子:Agent的推理逻辑代码(Python)
下面是一个简单的糖尿病患者Agent的推理逻辑,用于处理餐后血糖数据:
import pandas as pd
from sklearn.linear_model import LinearRegression
class DiabetesAgent:
def __init__(self):
# 初始化模型(用线性回归预测血糖变化)
self.model = LinearRegression()
# 高血糖阈值(餐后1小时)
self.high_threshold = 7.8
# 低血糖阈值
self.low_threshold = 3.9
def train_model(self, data):
# 用历史数据训练模型(特征:饮食量、运动时间;标签:血糖变化)
X = data[['food_intake', 'exercise_time']]
y = data['glucose_change']
self.model.fit(X, y)
def predict_glucose(self, food_intake, exercise_time):
# 预测未来30分钟血糖变化
return self.model.predict([[food_intake, exercise_time]])[0]
def process_data(self, current_glucose, food_intake, exercise_time, timestamp):
# 处理当前血糖数据
predicted_change = self.predict_glucose(food_intake, exercise_time)
predicted_glucose = current_glucose + predicted_change
# 判断血糖状态
if predicted_glucose > self.high_threshold:
return self._generate_high_alert(current_glucose, predicted_glucose, timestamp)
elif predicted_glucose < self.low_threshold:
return self._generate_low_alert(current_glucose, predicted_glucose, timestamp)
else:
return self._generate_normal_message(current_glucose, predicted_glucose, timestamp)
def _generate_high_alert(self, current, predicted, timestamp):
# 生成高血糖提醒
return {
"type": "alert",
"level": "high",
"message": f"【提醒】您在{timestamp}的餐后血糖为{current:.1f}mmol/L,预测30分钟后将升至{predicted:.1f}mmol/L(超过阈值{self.high_threshold}mmol/L)。建议:1. 散步15分钟;2. 避免食用高糖食物;3. 30分钟后再次测量。"
}
def _generate_low_alert(self, current, predicted, timestamp):
# 生成低血糖提醒
return {
"type": "alert",
"level": "emergency",
"message": f"【紧急提醒】您在{timestamp}的血糖为{current:.1f}mmol/L,预测30分钟后将降至{predicted:.1f}mmol/L(低于阈值{self.low_threshold}mmol/L)。建议立即食用15g含糖食物(如1杯糖水、2块巧克力),15分钟后再次测量。若症状未缓解,请及时就医。"
}
def _generate_normal_message(self, current, predicted, timestamp):
# 生成正常血糖消息
return {
"type": "info",
"message": f"【提示】您在{timestamp}的血糖为{current:.1f}mmol/L,预测30分钟后将保持在{predicted:.1f}mmol/L(正常范围)。继续保持良好的生活习惯!"
}
# 测试代码
# 历史数据(food_intake:饮食量(g),exercise_time:运动时间(min),glucose_change:血糖变化(mmol/L))
history_data = pd.DataFrame({
'food_intake': [200, 300, 150, 250],
'exercise_time': [10, 0, 20, 5],
'glucose_change': [1.2, 2.5, 0.5, 1.8]
})
# 初始化Agent并训练模型
agent = DiabetesAgent()
agent.train_model(history_data)
# 测试数据(当前血糖:7.0mmol/L,饮食量:250g,运动时间:5min,时间:13:00)
current_glucose = 7.0
food_intake = 250
exercise_time = 5
timestamp = "2024-05-20 13:00"
# 处理数据并生成结果
result = agent.process_data(current_glucose, food_intake, exercise_time, timestamp)
print(result)
运行结果:
{
"type": "alert",
"level": "high",
"message": "【提醒】您在2024-05-20 13:00的餐后血糖为7.0mmol/L,预测30分钟后将升至8.8mmol/L(超过阈值7.8mmol/L)。建议:1. 散步15分钟;2. 避免食用高糖食物;3. 30分钟后再次测量。"
}
这个代码示例展示了Agent的推理能力(用线性回归模型预测血糖变化)和行动能力(生成高血糖提醒)。
5.4 避坑指南
- 不要“过度设计能力”:比如Agent不需要具备“诊断癌症”的能力(超出其职责范围);
- 不要“忽视交互体验”:比如老年人不喜欢复杂的APP界面,应该优先设计语音交互;
- 不要“忘记学习能力”:比如Agent应该根据用户反馈调整建议(比如用户反馈“散步15分钟没用”,就调整为“散步20分钟”)。
步骤6:系统架构与技术选型——让Agent“跑起来”
6.1 为什么要做?
系统架构是Agentic AI智能健康项目的“骨架”,如果架构设计不合理,会导致:
- 性能问题(比如数据处理延迟高,无法实时提醒);
- 扩展性问题(比如无法添加新的设备或功能);
- 维护问题(比如代码混乱,难以修改)。
6.2 怎么做?
第一步:设计系统架构(Architecture)
Agentic AI智能健康系统的架构通常分为5层:
- 感知层(Perception Layer):负责收集数据(智能手表、血糖仪、用户输入);
- 数据层(Data Layer):负责存储和治理数据(数据库、数据仓库、数据湖);
- 推理层(Reasoning Layer):负责决策(机器学习模型、规则引擎);
- 交互层(Interaction Layer):负责与用户交互(APP、小程序、语音助手);
- 决策层(Decision Layer):负责协调各层(Agent核心逻辑)。
第二步:技术选型(Technology Selection)
根据架构层的需求,选择合适的技术:
- 感知层:用MQTT协议(物联网设备通信)、HTTP/HTTPS(用户输入);
- 数据层:用PostgreSQL(关系型数据库,存储用户基本信息)、MongoDB(非关系型数据库,存储传感器数据)、Redis(缓存,存储高频访问数据)、Apache Hadoop(数据湖,存储海量历史数据);
- 推理层:用TensorFlow/PyTorch(机器学习框架)、Drools(规则引擎)、LangChain(Agent框架);
- 交互层:用Flutter(跨平台APP)、React(小程序)、Dialogflow(语音交互)、Pushy(推送服务);
- 决策层:用Python/Java(核心逻辑开发)、Kubernetes(容器编排,管理服务)。
6.3 例子:系统架构图(Mermaid)
flowchart TB
subgraph 感知层
A[智能手表] -->|MQTT| C[数据采集服务]
B[血糖仪] -->|MQTT| C
D[用户APP] -->|HTTP| C
end
subgraph 数据层
C -->|存储| E[PostgreSQL(用户信息)]
C -->|存储| F[MongoDB(传感器数据)]
C -->|存储| G[Redis(缓存)]
C -->|存储| H[Hadoop(数据湖)]
end
subgraph 推理层
E -->|读取| I[机器学习模型(TensorFlow)]
F -->|读取| I
G -->|读取| I
I -->|决策| J[规则引擎(Drools)]
end
subgraph 决策层
J -->|协调| K[Agent核心逻辑(Python)]
end
subgraph 交互层
K -->|发送| L[APP(Flutter)]
K -->|发送| M[语音助手(Dialogflow)]
K -->|发送| N[推送服务(Pushy)]
end
L -->|反馈| K
M -->|反馈| K
N -->|反馈| K
6.4 避坑指南
- 不要“过度追求新技术”:比如用Kubernetes管理小项目(只有几个服务),会增加复杂度;
- 不要“忽视性能”:比如用MongoDB存储高频传感器数据(每1分钟一条),要确保索引优化;
- 不要“忘记扩展性”:比如数据层要支持添加新的数据库(比如未来需要存储基因数据),交互层要支持添加新的渠道(比如微信小程序)。
步骤7:原型验证与用户反馈——让Agent“更懂用户”
7.1 为什么要做?
原型验证是“快速验证需求”的关键,能帮你避免“开发完成后才发现用户不需要”的问题。比如,你设计了一个“语音提醒”功能,但用户反馈“语音太吵,更喜欢文字提醒”,这时候修改原型比修改成品要容易得多。
7.2 怎么做?
第一步:制作原型(Prototype)
根据需求分析结果,制作低保真原型(用Axure画界面)或高保真原型(用Flutter做可交互的APP)。比如,糖尿病患者APP的低保真原型包括:
- 首页:显示当前血糖值、今日提醒(用药、运动);
- 数据页:显示血糖趋势图(周/月);
- 建议页:显示饮食、运动建议;
- 设置页:调整提醒频率、选择交互方式(语音/文字)。
第二步:用户测试(User Testing)
邀请核心用户(比如10-20个糖尿病患者)测试原型,收集反馈。测试时要问:
- “这个功能对你有用吗?”(验证需求的有效性);
- “这个界面容易操作吗?”(验证交互的合理性);
- “你希望增加什么功能?”(挖掘潜在需求)。
第三步:迭代原型(Iteration)
根据用户反馈修改原型,比如:
- 用户反馈“语音提醒太吵”:增加“静音模式”,切换为文字提醒;
- 用户反馈“血糖趋势图看不懂”:增加“解读”功能(比如“你最近一周血糖控制得很好,继续保持”);
- 用户反馈“建议太笼统”:增加“个性化”选项(比如“我喜欢吃面食,有没有低糖面食建议?”)。
7.3 例子:用户反馈与迭代
用户反馈 | 迭代措施 |
---|---|
“语音提醒太吵,我在办公室不方便” | 增加“静音模式”,允许用户选择文字提醒或震动提醒 |
“血糖趋势图看不懂,不知道自己控制得好不好” | 增加“趋势解读”功能,用文字说明“最近一周血糖平均值下降了0.5mmol/L,控制得很好” |
“建议的饮食太单一,我喜欢吃面食” | 增加“饮食偏好”设置,用户可以选择“面食”“米饭”“粥”等,Agent根据偏好调整建议 |
7.4 避坑指南
- 不要“跳过原型验证”:比如直接开发成品,会导致后期修改成本很高;
- 不要“忽视用户反馈”:比如用户反馈“建议没用”,要认真分析原因(比如建议不符合用户的饮食习惯);
- 不要“过度迭代”:比如原型验证2-3次即可,避免拖延开发进度。
步骤8:迭代规划与风险评估——让项目“顺利推进”
8.1 为什么要做?
Agentic AI智能健康项目是长期迭代的过程,需要制定明确的迭代计划,同时评估风险,避免项目失败。比如,第一个迭代做核心功能(血糖监测、用药提醒),第二个迭代做扩展功能(饮食建议、运动计划),第三个迭代做优化功能(个性化推荐、语音交互)。
8.2 怎么做?
第一步:制定迭代计划(Iteration Plan)
用“敏捷开发”的方法,将项目分为多个迭代(每个迭代2-4周),每个迭代完成一个核心功能。比如:
- 迭代1(第1-2周):完成核心功能(血糖监测、用药提醒);
- 迭代2(第3-4周):完成扩展功能(饮食建议、运动计划);
- 迭代3(第5-6周):完成优化功能(个性化推荐、语音交互);
- 迭代4(第7-8周):完成测试与上线(用户验收、bug修复)。
第二步:风险评估与应对(Risk Management)
识别项目中的风险,并制定应对措施:
- 技术风险:机器学习模型准确率低(应对措施:用更多数据训练模型,或调整模型结构);
- 数据风险:数据收集不足(应对措施:与设备厂商合作,获取更多传感器数据);
- 用户风险:用户不接受主动提醒(应对措施:允许用户自定义提醒频率,或提供“关闭提醒”选项);
- 合规风险:违反《个人信息保护法》(应对措施:请律师审核数据收集流程,确保符合法规)。
8.3 例子:迭代计划与风险评估表
迭代 | 时间 | 核心功能 | 风险 | 应对措施 |
---|---|---|---|---|
迭代1 | 第1-2周 | 血糖监测、用药提醒 | 模型准确率低 | 用1000条历史数据训练模型,准确率达到90%以上 |
迭代2 | 第3-4周 | 饮食建议、运动计划 | 数据收集不足 | 与血糖仪厂商合作,获取500个用户的血糖数据 |
迭代3 | 第5-6周 | 个性化推荐、语音交互 | 用户不接受主动提醒 | 允许用户自定义提醒频率,提供“关闭提醒”选项 |
迭代4 | 第7-8周 | 测试与上线 | 合规风险 | 请律师审核数据收集流程,确保符合《个人信息保护法》 |
8.4 避坑指南
- 不要“制定过于乐观的迭代计划”:比如将核心功能放在1周内完成,会导致质量问题;
- 不要“忽视风险”:比如没有考虑“数据收集不足”的风险,会导致模型无法训练;
- 不要“停止迭代”:比如上线后就不再更新,会导致用户流失(比如用户需要新的功能,而系统没有)。
四、实际应用:某Agentic AI智能健康助手案例分析
4.1 项目背景
某医院想帮助糖尿病患者进行长期管理,减少并发症(比如糖尿病肾病、糖尿病足)。传统的管理方式是“患者每月到医院复查”,但无法实时监测患者的血糖、饮食、运动情况,导致患者的血糖控制率只有50%。
4.2 需求分析过程
该项目采用了本文的8个关键步骤进行需求分析:
- 用户画像:核心用户是“中年糖尿病患者”(40-60岁,有高血压并发症,每天需要测3次血糖);
- 场景建模:核心场景是“餐后血糖监测”“用药提醒”“运动后的血糖变化”;
- 伦理合规:明确Agent不能给出诊断结论,不能推荐未经批准的药物;
- 数据策略:收集血糖、血压、饮食、运动数据,从医院获取患者的检查报告;
- Agent能力设计:Agent具备感知(收集数据)、推理(预测血糖变化)、行动(发送提醒)、学习(根据反馈优化建议)的能力;
- 系统架构:采用“感知层-数据层-推理层-决策层-交互层”的架构;
- 原型验证:制作了低保真原型,邀请10个糖尿病患者测试,修改了“语音提醒太吵”“血糖趋势图看不懂”等问题;
- 迭代规划:制定了4个迭代计划,每个迭代完成一个核心功能。
4.3 实现效果
该Agentic AI智能健康助手上线后,取得了以下效果:
- 患者的血糖控制率从50%提高到80%;
- 患者的用药依从性从70%提高到90%;
- 患者的满意度达到95%(反馈“提醒很及时,建议很有用”)。
4.4 经验总结
- 聚焦核心用户:先做糖尿病患者,再扩展到高血压患者,避免需求分散;
- 重视场景建模:核心场景是“餐后血糖监测”,因为这是糖尿病患者最常遇到的问题;
- 持续迭代优化:根据用户反馈修改功能,比如增加“饮食偏好”设置,让建议更个性化。
五、未来展望:Agentic AI智能健康的“下一个十年”
5.1 技术发展趋势
- 更精准的个性化干预:用多模态数据(基因数据、环境数据、行为数据)训练模型,比如根据用户的基因特征(比如“胰岛素抵抗”)调整饮食建议;
- 更自然的交互方式:用脑机接口(BCI)实现“意念交互”,比如用户想知道血糖值,只需想一下,Agent就会发送数据;
- 更广泛的应用场景:扩展到“健康养老”(比如监测老年人的跌倒风险)、“康复治疗”(比如帮助中风患者进行肢体训练)、“母婴健康”(比如监测孕妇的血糖、血压)。
5.2 潜在挑战
- 伦理问题:比如“Agent是否有权决定用户的健康行为?”(比如Agent建议用户“不要吃蛋糕”,但用户想吃);
- 技术问题:比如“模型的可解释性”(用户想知道“为什么Agent建议我散步”,但模型无法给出明确的原因);
- 用户接受度问题:比如老年人不会用智能设备,需要更简单的交互方式(比如语音+屏幕显示)。
5.3 机遇
- 政策支持:国内的“健康中国2030”规划明确提出“推动智能健康发展”,为项目提供了政策保障;
- 技术进步:大模型(比如GPT-4)、物联网(IoT)、5G等技术的发展,为Agentic AI提供了更强大的能力;
- 市场需求:老龄化、慢性病高发等问题,导致智能健康的市场需求持续增长(预计2030年全球智能健康市场规模将达到1.5万亿美元)。
六、结尾:总结与思考
6.1 总结
Agentic AI智能健康项目的需求分析需要围绕“用户需求”和“Agent特性”展开,核心是8个关键步骤:
- 用户画像与需求分层:找到真正的用户;
- 场景建模与用户旅程映射:让Agent懂场景;
- 伦理与合规边界定义:守住安全底线;
- 数据策略与资产规划:让Agent有饭吃;
- Agent能力设计与交互逻辑:让Agent会做事;
- 系统架构与技术选型:让Agent跑起来;
- 原型验证与用户反馈:让Agent更懂用户;
- 迭代规划与风险评估:让项目顺利推进。
6.2 思考问题
- 你认为Agentic AI在智能健康中的最大挑战是什么?
- 如何平衡Agent的主动性和用户的隐私?
- 未来,Agentic AI会不会取代医生?为什么?
6.3 参考资源
- 书籍:《Agentic AI:智能体时代的到来》《智能健康:技术与应用》;
- 论文:《Agentic AI for Healthcare:Opportunities and Challenges》《Personalized Healthcare with Agentic AI》;
- 法规:《个人信息保护法》《医疗数据安全管理规范》《HIPAA》《GDPR》;
- 工具:Axure(原型设计)、TensorFlow(机器学习)、LangChain(Agent框架)、Mermaid(流程图)。
结语
Agentic AI正在重新定义智能健康的边界,而需求分析是项目成功的关键。希望本文的8个关键步骤能帮你从0到1梳理需求,构建一个“有用、好用、安全”的Agentic AI智能健康助手。未来,让我们一起期待Agentic AI为智能健康带来的更多可能性!
(全文约12000字)