(二)深度学习系列之AlexNet网络介绍以及pytorch代码实现花分类

本文介绍了AlexNet网络的特点,包括ReLU激活函数、局部响应归一化、重叠池化、数据增强和dropout,并阐述了它们在解决深度学习中过拟合问题的作用。此外,还提供了AlexNet网络结构图以及使用PyTorch实现花卉分类的代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文链接https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

2010年AlexNet在ImageNet大赛上以远超第二名的成绩获得冠军,该文章的一些思想依然延用到现在。

一. AlexNet的特点:

  1. ReLU Nonlinearity

    在当时,sigmoid和tanh函数是最常用的激活函数。
    s i g m o i d : F ( x ) = 1 1 + e x t a n h : F ( x ) = e x − e − x e x + e − x r e l u : F ( x ) = m a x ( 0 , x ) \\sigmoid :\quad F(x) = \frac{1}{1+e^x} \\ \\ tanh:\quad F(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}} \\ \\ relu:\quad F(x)=max(0,x) sigmoid:F(x)=1+ex1tanh:F(x)=ex+exexexrelu:F(x)=max(0,x)
    sigmoid和tanh在反向求导时,会容易出现梯度消失,无法完成深层网络的训练,而relu函数有效的缓解了梯度消失。

  2. Local Response Normalization

    AlexNet提出局部归一化有助于泛化,其公式如下:
    b x , y i = a x , y i / ( k + α ∑ j = m a x ( 0 , i − n / 2 ) m i n ( N − 1 , i + n / 2 ) ( a x , y j ) 2 ) β b^i_{x,y}=a^i_{x,y}/ \left(k+\alpha \sum_{j=max(0,i-n/2)}^{min(N-1,i+n/2)}(a_{x,y}^j)^2\right)^\beta bx,yi=ax,yi/ k+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值