经典深度学习网络【一天了解一个ok?】【基本点创新点】

googlenet

u-net

resnet

在ResNet网络中有如下几个亮点:

1.提出residual结构(残差结构),并搭建超深的网络结构(突破1000层)
2.使用Batch Normalization加速训练(丢弃dropout)

遇到的问题:

  1. 梯度消失或梯度爆炸:BN
  2. 退化问题(degradation problem):residual结构(残差结构)来减轻退化问题
  • 核心思想与特点:

    • 不再让网络层直接拟合目标函数 H(x),而是拟合残差函数 F(x) = H(x) - x

    • 通过恒等跳跃连接将输入 x 直接加到层的输出上:Output = F(x) + x

    • 这使得网络更容易学习到F(x) = 0(即恒等映射),从而保证增加深度不会带来性能损失。

    • 极大地简化了深层网络的优化过程。

AlexNet

lenet

transformer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值