C4.5 算法详解:决策树的经典算法

一、引言

        在机器学习领域,决策树是一种广泛使用的分类和回归方法。C4.5 是由Ross Quinlan在1993年提出的算法,是ID3算法的改进版本,被广泛应用于数据挖掘和机器学习领域。本文将详细介绍C4.5算法的基本概念、工作原理以及实现步骤。

二、C4.5 算法的基本概念

        C4.5算法是一种用于分类任务的决策树生成算法,其核心思想是通过信息增益比(Gain Ratio)来选择最优的划分属性,构建决策树。与ID3算法不同,C4.5不仅能够处理离散属性,还能处理连续属性,同时在处理缺失值和剪枝(Pruning)方面也有较大的改进。

三、C4.5 算法的工作原理

计算信息熵(Entropy)和信息增益(Information Gain) 信息熵是度量样本集合纯度的指标,定义如下:

def calculate_entropy(y):
    """计算数据集的熵"""
    # 计算各类别的概率
    value_counts = y.value_counts()
    probabilities = value_counts / len(y)

    # 计算熵
    entropy = -sum(probabilities * np.log2(probabilities))
    return entropy

信息增益则表示通过某个属性进行划分后,信息熵的减少量:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值