本研究基于深度学习和YOLOv11模型,提出了一种垃圾分类与管理系统,旨在解决传统垃圾检测中的效率低、精度不高等问题。随着垃圾问题的日益严重,传统的人工巡检和手动分类方法已经无法满足现代环境保护的需求,因此,需要一种自动化、精准的垃圾识别与管理方案。YOLOv11作为一种基于卷积神经网络的目标检测算法,具有较快的检测速度和较高的准确度,本研究通过对YOLOv11模型进行适当的调整与优化,提升了其在环境中的适应性,从而有效解决了垃圾检测中分类不明确等挑战。实验结果表明,该方法能够快速且准确地识别不同类型的垃圾,具有较强的实际应用价值。
然而,尽管YOLOv11模型在垃圾检测中表现出了较为优异的效果,仍然存在一些局限性。本研究还探讨了多种优化策略,包括数据增强、迁移学习以及多模态数据融合等方法,期望进一步提高模型的鲁棒性和准确性。结合激光扫描、声呐成像等技术手段,进一步提升垃圾检测的智能化水平。通过这些技术创新,垃圾检测与管理将向更高效、智能、可持续的方向发展,助力全球环境保护。
图4-1 数据预处理流程
图4-2 数据文件
为了提升系统的长期服务性和可靠性,管理系统还需要记录和查询历史识别记录。每次用户提交图像并完成垃圾识别后,系统将保存相关的识别结果,包括垃圾的类别、检测的置信度、图像的上传时间和用户的标识信息。用户可以通过系统查询和回顾历史记录,了解过去提交的垃圾检测结果。
通过集成YOLOv11检测模型与数据库管理功能,基于YOLOv11的垃圾检测管理系统可以高效地支持垃圾的自动识别与历史数据查询。这不仅提升了垃圾管理的精准度,也为后续的垃圾管理决策和管理提供了数据支持。5-3所示:
图5-3 垃圾识别信息