基于大模型的知识问答系统全面总结(附Python完整代码)

本次比赛要求参赛选手以ChatGLM2-6B模型为中心制作一个财务问答系统,回答用户的金融相关的问题,不允许使用其他的大语言模型。参赛选手可以使用其他公开访问的外部数据来微调模型,也可以使用向量数据库等技术。

赛题任务

本次比赛要求参赛选手以ChatGLM2-6B模型为中心制作一个问答系统,回答用户的金融相关的问题,不允许使用其他的大语言模型。参赛选手可以使用其他公开访问的外部数据来微调模型,也可以使用向量数据库等技术。

本次比赛评估模型能力的赛题按照涉及模型的能力和复杂程度大体分为初级、中级、高级三种类型,每种类型的题目拥有不同的分值:

初级:数据基本查询(40分)

参赛者需要利用提供的ChatGLM2-6B开源模型和上市公司年报原始数据,并以此为基础创建信息问答系统。系统需能够解决基本查询,如:某公司2021年的研发费用是多少?等问题。

中级:数据统计分析查询(30分)

在初级阶段的基础上,参赛者需要进行金融数据的统计分析和关联指标查询。系统需基于各类指标,提供问题和答案,如:某公司2021年研发费用增长率为多少?等问题。

高级:开放性问题(30分)

如:某公司2021年主要研发项目是否涉及国家创新领域,如新能源技术、人工智能等?

技术交流群

本文源代码及资料已梳理完毕,建了技术交流群&星球!想要进交流群或者资料的同学,可以直接加微信号:dkl88194。加的时候备注一下:研究方向 +学校/公司,即可。然后就可以拉你进群了。

方式①、添加微信号:dkl88194,备注:来自CSDN + 大模型面试题
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:大模型面试题

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

馒头科技

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

FinGLM_all

图片

图片

图片

图片

图片

图片

图片

南哪都队

图片

图片

图片

图片

Chatglm反卷总局

图片

图片

图片

图片

nsddd

图片

图片

图片

龙盈战队

图片

结婚买房代代韭菜

图片

图片

TabIsabaopilong

图片

图片

图片

流宝真人

图片

### 大模型在数据问答中的实现方式与应用场景 大模型在数据问答中的应用,主要依赖其强大的自然语言理解和生成能力,以及对大规模数据的学习能力。以下内容详细说明了其实现方式和应用场景。 #### 实现方式 1. **微调(Fine-Tuning)** 通过在特定领域的问答数据集上对大模型进行微调,可以显著提升其在特定任务上的表现。例如,使用包含行业术语和技术细节的问答对数据集对模型进行训练,能够使其更准确地理解用户提问并生成相关答案[^3]。 2. **检索增强生成(RAG, Retrieval-Augmented Generation)** 在数据问答场景中,RAG 方法结合了信息检索和生成式模型的优势。具体来说,当用户提出一个问题时,系统首先从知识库或文档集合中检索相关信息,然后将这些信息作为上下文输入到生成模型中,从而生成更精准的答案。 3. **对话式交互设计** 数据问答系统可以通过对话形式与用户交互,逐步澄清问题、缩小查询范围,并最终提供精确的结果。这种设计特别适合复杂查询场景,例如财务分析、市场趋势预测等[^2]。 4. **结构化数据处理** 大模型能够直接解析和理解结构化数据(如表格、数据库),并通过自然语言生成技术将查询结果转化为易于理解的文本描述。这种方法降低了非技术人员使用数据分析工具的门槛[^2]。 #### 应用场景 1. **金融领域** 银行和证券公司利用大模型实现自动化报表生成、风险评估和市场分析等功能。例如,用户可以通过自然语言提问获取特定时间段内的股票表现或经济指标变化情况[^2]。 2. **零售与消费品行业** 食品饮料、美妆、餐饮等行业通过大模型支持的数据问答系统,快速响应消费者需求变化,优化供应链管理和营销策略[^2]。 3. **医疗健康** 在医疗领域,大模型可以帮助医生和研究人员快速查找疾病相关的统计数据、临床试验结果或药品信息,提高诊断效率和科研进展[^1]。 4. **智能客服** 结合数据问答能力的智能客服系统,能够实时解答用户关于产品价格、库存状态、物流进度等问题,同时提供个性化的推荐服务[^4]。 5. **教育与研究** 学术机构和教育平台利用大模型构建知识问答系统,帮助学生和研究人员高效获取所需资料,促进学习和创新[^1]。 ```python # 示例代码:基于 RAG 的数据问答实现 import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # 初始化模型和分词器 tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/rag-token-base") def answer_question(question, context): # 构建输入 input_text = f"question: {question} context: {context}" inputs = tokenizer(input_text, return_tensors="pt") # 模型推理 with torch.no_grad(): outputs = model.generate(inputs["input_ids"]) # 解码输出 answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer # 示例调用 question = "全球 GDP 最高的国家是哪个?" context = "美国是世界上 GDP 最高的国家,2022 年 GDP 达到 25 万亿美元。" print(answer_question(question, context)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值