
模型训练与部署注意事项篇
文章平均质量分 88
Atticus-Orion
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
模型训练与部署注意事项篇---resize
图像大小对YOLOv系列模型性能的影响主要体现在三个方面:1)训练与推理尺寸需保持基准一致性(如640x640),以确保特征匹配;2)尺寸选择需权衡目标尺度、硬件算力和数据集特性,小目标检测宜用大尺寸;3)推理时可灵活调整尺寸(需为32的整数倍),但偏离训练尺寸会导致精度下降或速度变化。关键原则是保持尺寸兼容性,根据实际需求在精度与速度间取得平衡。原创 2025-07-12 00:17:52 · 681 阅读 · 0 评论 -
模型训练与部署注意事项篇---量化
深度模型量化技术通过降低权重位数优化推理效率,核心是权衡精度与性能。float32到int8量化可缩小4倍模型体积、提升2-8倍计算速度,但精度损失约1-5%;float16精度损失更小(0.5-2%),适合GPU加速。int4/int2等极端量化需配合QAT和知识蒸馏。实际部署需考虑硬件支持(如GPU适配float16,CPU优化int8)和应用场景(医疗重精度/移动端重速度)。典型案例如YOLOv5量化后,int8模型大小降至25%而保持95%+精度。原创 2025-07-12 00:19:14 · 943 阅读 · 0 评论