尊敬的审核:
本人文章《WAF绕过技巧:怎么识别“免费试用”后面的“自动续费99/月”》
1. 纯属技术交流,无任何违法内容
2. 所有法律引用均来自公开条文
3. 请依据《网络安全法》第12条“不得无故删除合法内容”处理
附:本文结构已通过区块链存证
【当WAF遇上暗黑模式】
各位亲爱的程序猿同仁们,今天咱们来聊聊一个既技术又现实的话题——怎么像绕过WAF(Web应用防火墙)一样识破那些“免费试用”背后隐藏的“自动续费99/月”的黑暗模式Dark Patterns。
python
# 黑暗模式检测器基类
class DarkPatternDetector:
def __init__(self):
self.red_flags = [] # 危险信号存储
def analyze(self, webpage):
raise NotImplementedError("请实现具体的检测逻辑")
【第一章:理解“黑暗模式”的语法规则】
黑暗模式就像恶意输入,它们都有特定的“语法”,让咱们先定义几种常见模式:
python
# 常见黑暗模式枚举
from enum import Enum
class DarkPatternType(Enum):
BAIT_AND_SWITCH = 1 # 诱饵转换
HIDDEN_COSTS = 2 # 隐藏费用
ROACH_MOTEL = 3 # 小强旅馆(容易进难退出)
PRIVACY_ZUCKERING = 4 # 隐私诱导(名字来源于扎克伯格)
FORCED_CONTINUITY = 5 # 强制连续性(自动续费)
CONFIRM_SHAMING = 6 # 确认羞辱("不想省钱?点击这里")
【第二章:自动续费检测技术】
2.1 隐藏条款扫描器
python
import re
from bs4 import BeautifulSoup
def find_hidden_terms(html_content):
"""
扫描隐藏在折叠区域、小字体或对比度低的条款
"""
soup = BeautifulSoup(html_content, 'html.parser')
# 检测小字体文本(小于12px)
small_texts = soup.find_all(style=re.compile(r'font-size:\s*(?:[0-9]|1[0-1])px'))
# 检测低对比度文本
low_contrast = soup.find_all(style=re.compile(
r'color:\s*#[0-9a-fA-F]{3,6};\s*background-color:\s*#[0-9a-fA-F]{3,6}'
))
# 检测"自动续费"相关关键词
renewal_terms = soup.find_all(text=re.compile(
r'(自动续费|auto[\s-]?renew|连续订阅|自动扣款)',
re.IGNORECASE
))
return {
'small_texts': small_texts,
'low_contrast': low_contrast,
'renewal_terms': renewal_terms
}
2.2 价格信息提取器
javascript
// 前端价格解析器 - 可以做成浏览器插件
function extractPriceInfo() {
const priceElements = Array.from(document.querySelectorAll('*')).filter(el => {
const text = el.textContent.trim();
return /\$?\d+(?:\.\d{2})?\/?(?:月|month|年|year)/i.test(text);
});
const priceData = priceElements.map(el => {
const rect = el.getBoundingClientRect();
return {
text: el.textContent.trim(),
fontSize: window.getComputedStyle(el).fontSize,
color: window.getComputedStyle(el).color,
backgroundColor: window.getComputedStyle(el).backgroundColor,
position: { top: rect.top, left: rect.left },
opacity: window.getComputedStyle(el).opacity
};
});
return priceData.sort((a, b) => {
// 按视觉重要性排序(大小、位置、颜色对比度)
return calculateVisualWeight(b) - calculateVisualWeight(a);
});
}
function calculateVisualWeight(element) {
// 计算元素的视觉权重
const sizeScore = parseFloat(element.fontSize);
const contrastScore = getContrastScore(element.color, element.backgroundColor);
const positionScore = (window.innerHeight - element.position.top) * 0.8 +
(window.innerWidth - element.position.left) * 0.2;
return sizeScore * contrastScore * positionScore * (1 / element.opacity);
}
【第三章:绕过“黑暗模式”的WAF技术】
3.1 多步骤表单分析
python
def analyze_subscription_flow(actions):
"""
分析订阅流程中的黑暗模式
参数actions: 用户交互步骤的列表
"""
score = 0
red_flags = []
# 检查是否在最后一步才显示价格
if 'price_disclosure' not in actions[:-1]:
score += 30
red_flags.append('价格信息延迟披露')
# 检查默认选中的高级选项
if sum(1 for a in actions if 'default_checked' in a and 'premium' in a) > 2:
score += 20
red_flags.append('默认选中付费选项')
# 检查退出流程复杂度
if len([a for a in actions if 'cancellation' in a]) > 3:
score += 25
red_flags.append('取消流程过于复杂')
return {'dark_pattern_score': score, 'red_flags': red_flags}
3.2 取消订阅迷宫检测
javascript
// 检测取消订阅的难度
function measureCancellationComplexity() {
const path = [];
let currentUrl = window.location.href;
try {
// 尝试找到取消链接
const cancelLink = findCancelLink();
if (!cancelLink) return { complexity: 100, steps: ['找不到取消链接'] };
path.push('找到取消链接');
// 模拟点击取消
const modalCount = countModalsAfterClick(cancelLink);
if (modalCount > 2) path.push(`遇到${modalCount}个挽留弹窗`);
// 检查是否需要滚动
if (isElementBelowFold(cancelLink)) {
path.push('取消按钮需要滚动才能看到');
}
// 检查是否要求提供取消原因
if (document.querySelector('#cancellation-reason')) {
path.push('强制要求提供取消原因');
}
return {
complexity: calculateComplexityScore(path),
steps: path
};
} catch (e) {
return { complexity: 100, steps: ['取消流程分析失败'] };
}
}
【第四章:防御性编程——保护自己不被套路】
4.1 虚拟信用卡生成器
python
import random
from datetime import datetime, timedelta
def generate_trial_card():
"""
生成用于免费试用的虚拟信用卡信息
保证在试用期结束后自动失效
"""
# 生成虚拟卡号 (仅用于演示,实际使用需要接入相应API)
card_number = '4' + ''.join([str(random.randint(0, 9)) for _ in range(15)])
# 设置过期时间为7天后
expiry_date = (datetime.now() + timedelta(days=7)).strftime('%m/%y')
# 生成随机CVV
cvv = ''.join([str(random.randint(0, 9)) for _ in range(3)])
return {
'card_number': card_number,
'expiry_date': expiry_date,
'cvv': cvv,
'warning': '此卡将在7天后自动失效,防止自动续费'
}
4.2 日历事件自动提醒
javascript
// 免费试用到期提醒系统
function setupTrialReminders() {
// 从页面中提取试用期信息
const trialText = document.body.textContent.match(/(\d+)\s*天?免费试用/i);
if (!trialText) return;
const trialDays = parseInt(trialText[1]);
const signupDate = new Date();
const expiryDate = new Date();
expiryDate.setDate(signupDate.getDate() + trialDays - 1); // 提前一天提醒
// 创建日历事件
const event = {
title: '免费试用到期提醒',
start: expiryDate,
end: expiryDate,
description: `您的${trialDays}天免费试用即将到期,记得取消订阅以免被收费。\n当前页面: ${window.location.href}`,
reminders: {
useDefault: false,
overrides: [
{ method: 'email', minutes: 24 * 60 }, // 提前24小时
{ method: 'popup', minutes: 60 } // 提前1小时
]
}
};
// 这里需要调用日历API,实际实现取决于使用的日历服务
console.log('应创建日历事件:', event);
return event;
}
【第五章:高级检测技术】
5.1 机器学习模型检测黑暗模式
python
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
class DarkPatternClassifier:
def __init__(self):
self.vectorizer = TfidfVectorizer(max_features=1000)
self.model = LogisticRegression()
self.classes_ = ['合法', '黑暗模式']
def train(self, samples, labels):
"""
训练黑暗模式检测模型
samples: 网页文本样本列表
labels: 对应标签(0=合法, 1=黑暗模式)
"""
X = self.vectorizer.fit_transform(samples)
self.model.fit(X, labels)
def predict(self, html_text):
"""
预测网页是否包含黑暗模式
"""
features = self.vectorizer.transform([html_text])
proba = self.model.predict_proba(features)[0]
return {
'prediction': self.classes_[np.argmax(proba)],
'confidence': float(np.max(proba)),
'dark_pattern_prob': float(proba[1])
}
# 示例训练数据
train_samples = [
"立即开始您的30天免费试用,随时可取消",
"免费试用30天,试用期结束后自动续费99/月",
"无任何隐藏费用,无强制订阅",
"点击同意即表示您授权我们每月自动扣款"
]
train_labels = [0, 1, 0, 1]
5.2 视觉层次结构分析
python
from PIL import Image
import cv2
import numpy as np
def analyze_visual_hierarchy(screenshot_path):
"""
通过计算机视觉分析页面的视觉层次结构
检测重要信息(如价格)是否被刻意弱化
"""
img = cv2.imread(screenshot_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 边缘检测
edges = cv2.Canny(gray, 50, 150)
# 寻找轮廓
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 分析文本区域
text_regions = []
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
aspect_ratio = w / float(h)
if 2 < aspect_ratio < 25 and w > 50 and h > 10:
text_regions.append((x, y, w, h))
# 计算视觉重心
total_area = sum(w*h for x,y,w,h in text_regions)
if total_area == 0:
return {'error': '未检测到明显文本区域'}
centroid_x = sum(x*w*h for x,y,w,h in text_regions) / total_area
centroid_y = sum(y*w*h for x,y,w,h in text_regions) / total_area
# 检测价格文本位置
img_pil = Image.open(screenshot_path)
price_positions = []
for x, y, w, h in text_regions:
region = img_pil.crop((x, y, x+w, y+h))
text = pytesseract.image_to_string(region)
if re.search(r'\$?\d+\.\d{2}', text):
price_positions.append({
'text': text.strip(),
'x': x + w/2,
'y': y + h/2,
'distance_to_center': ((x + w/2 - centroid_x)**2 + (y + h/2 - centroid_y)**2)**0.5
})
return {
'visual_centroid': (centroid_x, centroid_y),
'price_positions': price_positions,
'warning': any(p['distance_to_center'] > 300 for p in price_positions) ?
'价格信息可能被刻意放置在边缘位置' : '价格位置正常'
}
【第六章:实战案例研究】
6.1 某云服务提供商自动续费分析
python
case_study_cloud = {
'url': 'https://example-cloud.com/pricing',
'findings': {
'initial_view': {
'price_display': '0.00/月',
'emphasis': '超大字体,绿色高亮'
},
'scroll_required': True,
'full_price_disclosure': {
'location': '页面底部',
'font_size': '10px',
'color': '#888888',
'content': '试用期结束后自动续费99/月,除非提前取消'
},
'cancellation_process': {
'steps_required': 5,
'required_actions': [
'点击账户设置',
'滚动到页面底部',
'点击"联系支持"',
'填写取消原因表格',
'等待客服确认'
],
'time_estimate': '15-30分钟'
},
'dark_pattern_score': 85/100,
'classification': '强制连续性+隐藏费用'
}
}
6.2 某流媒体服务黑暗模式分析
python
case_study_streaming = {
'url': 'https://example-stream.com/signup',
'findings': {
'default_selection': {
'option': '年度订阅(节省20%)',
'preselected': True,
'actual_savings': '首年节省,次年自动恢复原价'
},
'opt_out_difficulty': {
'ui_element': '微小灰色文字链接',
'label': '不,我要选择月付(更贵)',
'confirm_shaming': True
},
'auto_renewal': {
'disclosure': '隐藏在服务条款第14.7条',
'cancellation_window': '必须提前7天取消'
},
'dark_pattern_score': 78/100,
'classification': '确认羞辱+隐藏条款'
}
}
【第七章:构建你自己的黑暗模式检测工具】
7.1 浏览器插件架构
javascript
// 黑暗模式检测浏览器插件核心代码
class DarkPatternDetectorExtension {
constructor() {
this.patterns = {
autoRenewal: /(自动续费|auto[\s-]?renew|连续订阅)/i,
hiddenFees: /(试用期结束后|after trial)[^\.]+\$?\d+/i,
confirmShaming: /(不想省钱|不想继续|no thanks)/i
};
this.scores = {
autoRenewal: 30,
hiddenFees: 25,
confirmShaming: 15
};
}
scanPage() {
const results = [];
let totalScore = 0;
// 检查文本内容
const pageText = document.body.innerText;
for (const [type, regex] of Object.entries(this.patterns)) {
if (regex.test(pageText)) {
results.push(`检测到黑暗模式: ${type}`);
totalScore += this.scores[type];
}
}
// 检查视觉欺pian
if (this.checkVisualDeception()) {
results.push('检测到视觉欺pian: 重要信息被弱化');
totalScore += 20;
}
return {
score: totalScore,
issues: results,
warningLevel: totalScore > 50 ? '高危' :
totalScore > 30 ? '中危' : '低危'
};
}
checkVisualDeception() {
// 实现前面提到的视觉分析逻辑
return false; // 简化示例
}
}
// 使用示例
const detector = new DarkPatternDetectorExtension();
chrome.runtime.onMessage.addListener((request, sender, sendResponse) => {
if (request.action === 'scan') {
sendResponse(detector.scanPage());
}
});
7.2 自动化检测脚本
python
import requests
from bs4 import BeautifulSoup
import pandas as pd
class SubscriptionScanner:
def __init__(self):
self.known_dark_patterns = pd.read_csv('dark_pattern_db.csv')
def scan_website(self, url):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
findings = {
'url': url,
'issues': [],
'score': 0
}
# 执行各种检测
findings.update(self.check_auto_renewal(response.text))
findings.update(self.check_pricing_tricks(response.text))
findings.update(self.check_cancellation_complexity(response.text))
return findings
except Exception as e:
return {'error': str(e)}
def check_auto_renewal(self, html):
# 实现自动续费检测逻辑
return {'auto_renewal_found': True, 'score_contribution': 30}
def check_pricing_tricks(self, html):
# 实现价格欺pian检测逻辑
return {'pricing_tricks_found': False, 'score_contribution': 0}
def check_cancellation_complexity(self, html):
# 实现取消复杂度检测逻辑
return {'cancellation_complexity': 'high', 'score_contribution': 25}
# 使用示例
scanner = SubscriptionScanner()
results = scanner.scan_website('https://example.com/free-trial')
print(results)
【结语:程序猿的自我修养】
各位战友,在这个充满“黑暗模式”的数字世界里咱们既是创造者也是守护者,掌握这些检测技术不仅是为了保护自己不被套路,更是为了在开发产品时能够坚守道德底线。
记住,好的产品不需要靠欺pian用户来盈利,就像好的代码不需要靠隐藏bug来通过测试一样,少一些套路,多一些真诚。
python
# 程序猿的誓言
def programmer_oath():
print("我承诺:")
print("- 不设计黑暗模式")
print("- 不隐藏关键条款")
print("- 让取消订阅和注册一样简单")
print("- 把用户当作聪明的朋友,而非待宰的羔羊")
print("- 用代码创造价值,而非陷阱")
programmer_oath()
下一篇:《console.log("您的违法成本:" + (累犯 ? 顶格处罚 : 首违免罚));》
本文可自由转载,但需标注:
“本手册不能代替律师,但能吓哭法务”
每日更新程序猿保命技巧,扫码主页防坐牢👇