- 博客(692)
- 收藏
- 关注
原创 AI智能体(Agent)是什么?(非常详细),零基础入门到精通,看这一篇就够了
本文介绍了AI智能体的核心概念、基本原理和应用场景。文章首先探讨了学习AI的重要性,强调其能提升效率和竞争力。随后解析了大语言模型(LLM)与人类思维的差异,引出了AI智能体的定义:一个能自主决策和执行的智能助手,其核心公式为Agent=LLM+Planning+Memory+Tools。文中详细阐述了智能体的三大核心要素:记忆(短期/长期)、规划(任务分解与执行)和工具(外部资源调用)。最后,作者提供了大模型学习资源,包括学习路线、视频教程、技术文档等,帮助读者从零开始入门AI大模型领域。
2025-07-31 14:30:00
564
原创 AI Agent与Agentic AI:原理、应用、挑战与未来展望
AI Agent技术发展与应用前景 本文系统探讨了AI Agent与Agentic AI的技术发展、应用现状及未来趋势。文章首先分析了AI Agent兴起的背景,指出大型语言模型(LLM)的突破为Agent提供了关键的智能支持,同时基础设施的成熟降低了开发门槛。在核心技术层面,文章详细解析了AI Agent的感知、认知决策和行动三大模块,并提供了OpenCV、GPT-3等具体代码示例。此外,文章分类梳理了当前主流的Agent平台和框架,包括低代码平台、开发框架和应用产品等。最后,文章讨论了AI Agent面
2025-07-31 14:30:00
295
原创 什么是LLM?看这一篇就够了!
本文介绍了大语言模型(LLM)的概念和应用。LLM是通过海量文本训练、能处理语言任务的大型模型,具有创造性生成文本的能力。其应用场景包括内容创作、数据分析、编程辅助等,但也存在幻觉、信息滞后等缺陷。文章推荐了国内外主流LLM产品,如ChatGPT、Gemini、通义等,并指出各自的使用限制。总体而言,LLM展现了强大的语言处理能力,但在实际应用中仍需人工校验。
2025-07-30 11:43:47
473
原创 AI大模型系列之六:基于LLM的Agent架构图解
本文探讨了基于大语言模型(LLM)的Agent架构设计,主要包括两种主流框架:一种由Profile、Memory、Planning和Action四个核心模块组成;另一种则分为控制端(Brain)、感知端(Perception)和行动端(Action)三部分。论文详细解析了各模块功能,如Profile模块定义Agent角色特性,Memory模块管理信息存储,Planning模块处理任务分解与策略制定,Action模块负责决策执行。研究还对比了华为盘古Agent等实践案例,并探讨了多智能体系统的发展趋势,指出大
2025-07-30 11:39:31
841
原创 文心大模型4.5开源测评:保姆级部署教程+多维度测试验证
百度文心大模型4.5系列开源标志着国产AI进入生态共建新阶段。该系列包含10款轻量级到超大规模模型,其中0.3B版本采用MoE架构和4位量化技术,实现单卡A800高效部署。文章系统测评了该模型在代码生成、逻辑推理等四大核心能力,展示了国产大模型的技术突破。通过PaddlePaddle框架和FastDeploy工具链,企业可快速实现AI应用落地。测试表明,该模型在中文语义理解、系统故障诊断等场景表现优异,为中小企业提供了低门槛AI解决方案。
2025-07-29 15:00:00
1267
原创 大模型部署工程师进阶指南:从零开始部署Ollma和Qwen大模型
本文介绍了如何在本地安全使用大语言模型的解决方案——Ollama工具。Ollama是一个开源的大模型服务工具,允许用户通过简单命令在本地运行大模型,无需编写代码。它能自动根据电脑配置选择使用CPU或GPU运行,解决了使用云端AI工具时的数据隐私安全问题。文章提供了详细的安装教程:从官网下载对应系统版本(Windows/Mac),解压安装即可使用,并附有Windows系统安装说明链接。通过Ollama,用户可以在保证数据安全的前提下,在本地运行Qwen等大语言模型。
2025-07-29 14:45:00
553
原创 Coze(扣子)工作流:保姆级拆解历史人物的一生视频工作流,首尾帧难题轻松破
摘要: 本文介绍了一种利用Coze自动化生成历史人物生平视频的工作流,重点解决了首尾帧衔接的核心难点。工作流分为文案生成、图片循环生成、首尾帧处理、视频合成等步骤,通过巧妙拆分图片列表实现自然过渡。作者详细拆解了技术流程,并提供了代码实现思路,强调该方案可大幅降低制作门槛,助力批量产出爆款视频。文末附赠AI大模型学习资料,助力读者掌握前沿技术。
2025-07-28 14:39:50
749
原创 效率革命!10分钟用Dify+Spring Boot打造AI热点雷达,自媒体选赛道再不难!(附保姆级教程)
这篇文章介绍了一套基于Dify+Spring Boot构建的自媒体热点分析工具。系统分为两部分:SpringBoot定时任务负责采集公众号、百家号、今日头条平台7天内的热点数据并存入MySQL数据库;Dify应用通过大模型处理用户查询,可自动生成SQL语句查询数据库,并根据需求返回可视化图表或数据分析报告。该工具能快速呈现热门领域分布、头部作者排名等关键信息,帮助自媒体从业者把握平台热点趋势。文章详细说明了系统架构设计、数据库搭建、数据采集实现方法,以及Dify应用中自然语言转SQL、数据可视化等核心功能模
2025-07-28 14:38:14
677
原创 Qwen3 本地部署指南:打造完全离线的AI助手
本文介绍了如何在本地部署阿里巴巴Qwen团队最新开源的大语言模型Qwen3。通过Ollama工具简化部署流程,用户可快速搭建本地LLM服务。文章详细解析了核心概念(LLM、Ollama、MCP协议、工具调用),并给出具体部署步骤:1)安装启动Ollama并下载Qwen3模型;2)安装Qwen-Agent及其扩展功能;3)编写Python脚本配置本地模型、定义工具集并初始化AI助手。该方案无需云服务或API密钥,即可实现强大的文本生成和工具调用能力,适合开发者本地开发使用。
2025-07-26 14:00:00
666
原创 大模型推理:Qwen3 32B vLLM Docker本地部署
Qwen3开源了8个不同规模的模型(包括MOE和Dense架构),支持119种语言和增强的Agent能力。部署方面,展示了在单机4块4090显卡上使用vLLM部署Qwen3-32B模型的方法,支持96k长上下文。提供了详细的Docker启动命令及参数解释,并介绍了推理/非推理两种模式下的推荐参数设置。此外还推荐了其他部署工具如sglang、Ktransformers等。
2025-07-26 13:30:00
960
原创 【MCP探索实践】Cherry Studio+MCP实战:3步让AI自动抓网页/读文件/调API
摘要 本文介绍了Cherry Studio与MCP协议的融合实践。MCP作为一种新兴的接口协议,能够连接AI模型与外部资源,实现即插即用、热插拔和统一接口等功能。Cherry Studio通过支持MCP服务,显著扩展了AI模型的应用能力,包括本地文件操作、网页数据抓取、云端API调用等多样化场景。文章详细阐述了MCP的技术优势,并通过实战演示展示了在Cherry Studio中配置MCP服务器、使用Fetch工具抓取网页内容以及操作本地文件的具体方法。这种融合不仅提升了AI模型的灵活性和实用性,也为开发者提
2025-07-25 11:12:41
849
原创 最新开源震撼:微软GraphRAG技术深度解析
微软开源GraphRAG技术革新AI数据处理能力 GraphRAG是微软2024年推出的基于知识图谱的检索增强生成技术,通过将非结构化文本转化为结构化图谱,显著提升大语言模型对复杂数据的理解能力。其核心架构包括数据预处理、实体识别、关系抽取、知识图谱构建等模块,能够实现自动化的知识更新和高效的跨领域信息整合。 该技术具有多维度问答、定制化摘要生成等功能特性,在私有数据分析、新闻创作、学术研究等领域展现出巨大应用价值。开源后迅速获得开发者社区积极响应,其创新的图结构处理方式为AI技术发展开辟了新方向。未来Gr
2025-07-25 11:11:32
884
原创 【AI语音】ChatTTS语音生成模型:突破开源语音天花板的新星
本文深入解析了ChatTTS文本转语音技术,从技术特性、实现原理到多元化应用场景。作为2Noise团队开发的创新项目,ChatTTS凭借超10万小时数据训练,在语音自然度、韵律控制和多语言支持上表现优异。文章详细介绍了其基于深度学习的端到端合成方法,并展示了在对话交互、内容创作等领域的应用潜力。此外,还提供了完整的部署实践指南,包括模型下载、环境配置和常见问题处理,为开发者提供了实用参考。
2025-07-24 10:32:20
342
原创 DeepSeek - V2.5:全新开源模型,融合通用与代码能力
DeepSeek-V2.5是由深度求索AI推出的新一代大模型,融合了chat和coder模型的优势,在通用能力、安全性和代码处理方面表现突出。该模型具备128k长上下文处理能力,支持功能调用、JSON输出和代码补全等功能。性能测试显示,其通用能力指标如ArenaHard胜率提升至76.2%,代码能力方面HumanEval通过率达89%。部署方面兼容Transformers框架,支持多设备内存分配和量化推理。整体而言,DeepSeek-V2.5在多项基准测试中展现了显著性能提升,是AI领域值得关注的新一代开源
2025-07-24 10:31:35
718
原创 一文彻底搞懂大模型 - Dify(Agent + RAG)
Dify是一个开源的大语言模型应用开发平台,致力于简化生成式AI应用的构建和部署。它融合了后端即服务(BaaS)和LLMOps理念,提供可视化Prompt编排、多模型支持(如Claude3、OpenAI)和丰富的功能组件。平台支持四种应用类型:聊天助手、文本生成、智能代理和工作流程,满足不同AI应用场景需求。Dify还深度整合RAG技术,提供完整的知识库构建方案,包括文档上传、文本预处理、多模式索引(高质量/经济/问答模式)和智能检索设置(向量/全文/混合搜索),显著降低AI应用开发门槛。
2025-07-23 13:53:09
800
原创 TradingAgents:用多Agent框架炒股,多赚6个点收益
摘要: 大型语言模型(LLMs)在金融和交易领域的应用日益广泛,通过模拟人类决策流程,提升复杂问题的解决能力。传统算法交易系统依赖定量模型,但难以全面捕捉市场复杂性,而LLMs擅长处理文本数据(如新闻、财报),成为金融助手的理想工具。 金融领域LLMs分为微调模型(如FinGPT、Bloomberg GPT)和从零训练模型(如XuanYuan 2.0),在分类和生成任务中表现优异。LLMs还可直接参与交易决策,通过新闻驱动、推理驱动或强化学习优化策略。此外,LLMs能挖掘Alpha因子,如QuantAgen
2025-07-23 11:37:31
938
原创 AI大模型学习路线:从入门到精通的全方面指南,一文搞定!附400g大模型全套学习教程,非常详细
本文介绍了AI大模型学习的入门路线,重点强调打好数学与编程基础。数学方面需要掌握线性代数、微积分、概率与统计等核心概念,推荐Khan Academy和MIT的公开课。编程方面建议学习Python语言及数据结构与算法,推荐Codecademy和Coursera的相关课程。通过系统学习这些基础知识,为后续深入AI大模型领域奠定坚实基础。
2025-07-22 14:45:57
550
原创 2025最新AI大模型学习路线:(非常详细)AI大模型入门,收藏这一篇就够了!_ai学习路线
大模型学习路线指南 学习大模型需要扎实的数学和编程基础。数学方面需掌握线性代数(矩阵、特征值)、微积分(导数、多变量微积分)和概率统计(贝叶斯定理、概率分布),推荐Khan Academy和MIT公开课。编程方面以Python为核心,需熟练使用并掌握数据结构与算法(如数组、排序算法),可参考Codecademy和Coursera课程。打好基础后,可逐步深入大模型的理论与实践应用。
2025-07-22 14:02:02
825
原创 训练10B的模型需要多大的数据?详解大模型中的Scaling Law
本文系统梳理了大模型研发中的Scaling Law理论及其应用。OpenAI提出的Scaling Law揭示了计算量、模型参数量与数据规模三者间的幂律关系,指出模型性能主要取决于这三要素而非具体结构。研究显示,为提升性能,模型规模与数据量需同步扩大,但具体比例存在争议(OpenAI认为模型更重要,DeepMind则主张均衡放大)。通过GPT-4、Baichuan2等案例验证了该定律的普适性,并提供了计算效率最优化的实操方法。特别指出LLaMA通过"反Scaling Law"策略,在更大数
2025-07-21 12:04:11
874
原创 [大模型] 搭建llama主流大模型训练环境
摘要: 本文介绍了基于LLaMA大模型训练的环境配置与模型转换方法。基础环境需配置Ubuntu 18.04、4*A100 GPU、CUDA 11.7、cuDNN 8.4.1等组件,并通过pyllama下载LLaMA-7B/13B等模型。使用fork版本的transformers将原生LLaMA模型转换为HuggingFace格式,并支持后续的预训练或微调任务(如stanford_alpaca、Chinese-LLaMA-Alpaca等)。核心步骤包括环境安装、模型转换及衍生模型训练,为基于LLaMA的二次开
2025-07-21 11:46:10
832
原创 一文彻底搞懂大模型 - Prompt Engineering(提示工程)
提示工程(Prompt Engineering)是优化AI模型输出的关键技术,通过精心设计的Prompt(包含指令、上下文、示例等要素)引导大语言模型生成符合需求的文本。其核心方法包括:上下文学习(In-context Learning)——通过零样本、单样本或小样本示例让模型快速理解任务;以及思维链(Chain-of-Thought)——要求模型展示推理过程以提升复杂任务的准确性。这些技术无需调整模型参数,仅通过优化输入提示即可显著改善输出质量,为AI应用提供高效灵活的解决方案。
2025-07-18 11:06:51
637
原创 一文彻底搞懂大模型 - Dify(Agent + RAG)
Dify是一个开源的大语言模型应用开发平台,结合BaaS和LLMOps理念,简化生成式AI应用的创建和部署。它支持多种主流模型(如Claude3、OpenAI等),提供低代码开发、模块化设计和丰富功能组件。Dify支持四种基于LLM的应用:聊天助手、文本生成、智能代理和工作流程。在RAG方面,Dify提供完整的知识库构建方案,包括文档上传、文本预处理、索引模式选择(高质量/经济/问答模式)和检索设置,帮助开发者快速构建高效的AI应用。平台通过可视化工具和自动化流程,显著降低了AI应用开发的门槛。
2025-07-17 15:20:03
651
原创 【机器学习】探索未来科技的前沿:人工智能、机器学习与大模型
本文系统介绍了人工智能(AI)、机器学习(ML)和大模型三大核心技术。首先概述了AI的定义、发展历程(从1956年达特茅斯会议至今)及其分类(弱AI、强AI、超级AI)。其次重点解析机器学习作为AI核心的实现原理(监督/无监督/强化学习)和应用场景(如图像识别)。最后探讨大模型的发展(如Transformer架构)、优势(强大泛化能力)与挑战(计算资源需求),并附有代码示例。文章还展望了AI与边缘计算、量子计算等前沿技术的融合趋势,以及相关的伦理和法律问题。
2025-07-16 11:49:43
990
原创 【重磅】2025国内主流AI 大模型架构及应用场景深度分析
经过大规模预训练的大模型,能够在各种任务中达到更高的准确性、降低应用的开发门槛、增强模型泛化能力等,是AI 领域的一项重大进步。大模型最早的关注度源于 NLP 领域,随着多模态能力的演进,CV 领域及多模态通用大模型也逐渐成为市场发展主流。政企的极大关注带动了行业领域大模型的高速发展,逐渐形成了多模态基模型为底座的领域大模型和行业大模型共同发展的局面。伴随基于大模型发展的各类应用的爆发,尤其是生成式 AI,为用户提供突破性的创新机会,打破了创造和艺术是人类专属领域的局面。AI 不再仅仅是“分类”,而且开
2025-07-15 10:52:55
492
原创 【三大突破正改写AI规则】国产之光DeepSeek架构理解与应用分析
DeepSeek是一个基于Transformer架构的AI模型,其核心创新包括动态专家路由算法和稀疏门控注意力机制,通过MoE(混合专家)层提升计算效率。该模型采用三阶段渐进训练策略和显存优化技术,显著提升了性能与资源利用率。在机械电子工程领域,DeepSeek已应用于预测性维护、智能质量控制、自动化设计优化等场景,展现了AI与实体产业的深度融合潜力。硬件方面,它支持GPU/TPU/NPU异构计算,并采用SiLU激活函数优化门控神经网络性能。未来演进方向将聚焦于模型轻量化与行业解决方案的深度适配。
2025-07-15 10:28:58
904
原创 DeepSeek本地部署之deepseek-r1-distill-llama-70b 本地部署与 AI 应用实践
本文介绍了本地化部署大型语言模型DeepSeek-R1-Distill-Llama-70B的实施方案。该700亿参数开源模型在中文任务中表现优异,具有数据隐私保护、可定制化等优势。文章重点提供了服务器硬件配置建议,推荐使用多块高性能GPU(如4×RTX4090或A100 80GB)、大内存(128GB+)及高速NVMe存储。同时对比了单机与多机集群部署的适用场景,强调中小企业可优先采用单机多卡方案平衡性能与成本。最后指出需结合量化技术优化推理效率,满足企业级AI应用的并发需求。
2025-07-12 15:54:58
822
原创 百度文心大模型 4.5 开源深度测评:技术架构、部署实战与生态协同全解析
百度开源文心大模型4.5系列,覆盖A47B、A3B和0.3B三大分支,适配不同场景需求。A47B为全能力多模态旗舰,A3B侧重轻量多模态,0.3B适合嵌入式设备。系列包含Base版和进阶版,后者强化了指令遵循与推理能力。开发者可通过GitCode等平台获取模型,应用于视频理解、文本生成等场景。此次开源包含10款模型,提供预训练权重与推理代码,推动AI技术落地。
2025-07-12 15:10:53
426
原创 基于Dify的大模型RAG多轮对话性能优化方案(附代码)
本文探讨了基于RAG(检索增强生成)的大模型多轮对话解决方案。针对传统RAG在连续对话时检索信息不完整的问题,提出了三种优化策略:初始策略直接检索原始提问;拼接历史query策略通过结合当前与历史问题提升检索质量;多轮信息处理模块则独立处理对话与检索信息,确保关键要素完整。文章还列举了26项大模型应用开发技术主题,涵盖知识库增强、多模态处理、API调用等方向,为开发者提供从基础到进阶的实用指南。
2025-07-11 15:15:52
837
原创 大模型LLM | 一文彻底搞懂大模型Agent(智能体):Agent、Agent + RAG
摘要: 基于LLM的AI Agent正从科幻电影走向现实,其核心由规划、记忆、工具与行动四大模块构成,通过目标驱动方式完成复杂任务。结合RAG(检索增强生成)技术,Agent能动态获取外部知识,显著提升专业领域能力。以财报分析为例,通过整合LLM、RAG、自动化工具和任务规划,可实现数据收集、深度分析到报告生成的全流程智能化。这种技术架构标志着AI从被动应答转向主动决策,逐步成为高效的数字助手。
2025-07-11 14:16:22
428
原创 SpringBoot实战:AI大模型+亮数据代理高效获取视频资源
在短视频行业的迅猛发展下,海量的内容数据每天都在不断涌现,如何高效、精准地获取和处理这些数据,...而AI大模型则能够在海量视频内容中进行深度分析,识别用户兴趣和行为趋势,从而提供更精准的内容推荐和数据洞察。
2025-07-08 11:06:47
757
原创 RAG中的Embedding模型全面解析:原理、实现与代码示例
本文介绍了RAG(检索增强生成)系统中的Embedding模型,重点分析了其核心作用、主流分类及选择方法。Embedding模型将文本转换为向量表示,直接影响RAG系统的检索效果。主流模型包括基于Transformer的通用模型(如OpenAI的text-embedding-ada-002、Cohere系列)、开源模型(如Sentence-BERT)以及多模态模型。文章还详细解析了SBERT、OpenAI Embedding等核心模型,并提供了模型选择、微调、评估及优化技巧,帮助开发者构建高效的RAG系统。
2025-07-07 17:31:55
361
原创 医药行业的智能合同审查:大模型与AI赋能合规管理
随着医药行业的快速发展,尤其是在全球化背景下,企业在业务拓展、合作协议签订中需要处理大量复杂的合同。合同不仅是业务的法律保障,更是风险管理的重要工具。医药行业合同审查的复杂性源于其严格的合规性要求,包括与政府机构、研发机构、医院等多方签订的合同。尤其是医药行业中对知识产权、数据安全、药品销售和分销等条款有着非常严格的法规要求,稍有不慎便可能带来巨大的合规风险。因此,如何在确保业务高效开展的同时,严格遵守法规,已经成为医药企业关注的核心问题。
2025-07-04 12:02:31
856
原创 从泛读到精读:合合信息文档解析如何让大模型更懂复杂文档
合合信息推出"大模型加速器2.0",通过文档解析技术破解大模型理解复杂文档的瓶颈。其核心功能包括:高精度解析复杂图表、智能识别多元素并还原版面、灵活配置解析参数、文档抽取一体化处理、百页文档极速解析等。技术优势体现在AI驱动的全栈解决方案,涵盖逻辑版面分析、深度学习算法、全流程优化和行业适配性,可满足科研、教育、金融和企业服务等场景需求。该方案支持零门槛试用和API灵活接入,通过智能溯源确保数据可靠性,有效降低大模型"幻觉"风险,提升大模型在文档解析任务中的准确性和泛
2025-07-04 11:31:49
853
原创 《DeepSeek 行业应用大全(微课视频版)》人工智能深度剖析:解锁 AIGC 新生产力
《DeepSeek行业应用大全》全面解析AI时代下DeepSeek的多场景应用。该书从基础入门开始,介绍DeepSeek的安装启动与技术架构,帮助读者快速上手。核心内容聚焦生活助手、创意激发、英语学习和编程开发四大应用场景,通过丰富案例展现其实际价值。高级进阶部分涵盖代码优化、办公自动化等专业领域,并提供金融、教育等行业的深度案例解析。书中配有微课视频,通过理论结合实践的方式,让读者轻松掌握DeepSeek在不同领域的应用技巧。无论是AI初学者还是专业人士,都能从中获得实用指导,解锁AIGC新生产力。
2025-07-03 12:02:02
634
原创 LangChain教程——LangChain基本使用
LangChain是一个用于开发由大型语言模型 (LLM) 驱动的应用程序的框架,帮助开发者使用大型语言模型(LLMs)和聊天模型构建端到端的应用程序。
2025-07-02 14:39:45
1014
原创 AI agent 和Agentic AI 到底有啥区别?康奈尔大学最新论文揭秘!manus、扣子智能体实战案例一文看懂
AI智能体与智能体AI系统的进化与区别 从ChatGPT到如今的智能体AI系统,AI技术实现了从"一问一答"到"团队协作"的重大跃迁。AI智能体(如扣子、文心等)专注于单一任务,像个人助理;而智能体AI系统(如manus、Flowith)则通过多智能体协作处理复杂任务,如同专业团队。两者的核心区别在于:AI智能体是模块化、专一性的解决方案,而智能体AI系统具备分布式认知架构、记忆系统和编排层,能够自主分解和协调任务。随着技术发展,AI协作将走向更大规模、更自主的决策和
2025-07-02 11:58:24
505
原创 AI智能体|最新扣子(Coze)实战:5步玩转Coze,学会这一招,领先同事一整条街!【小白必看】
Coze工作流是一种自动化工具,可以串联多个插件、模型和任务节点,实现复杂流程的自动化执行。相比单一Prompt,工作流优势在于多步联动、跨系统对接、定时触发和可视化维护。本文以“每日天气预报”为例,演示了5步创建工作流的流程:1)新建工作流;2)调用天气API;3)配置AI文本处理节点;4)连接节点并设置输出;5)试运行并发布。通过工作流,用户可以实现7点自动推送天气等自动化任务,提升效率。文章还提供了AI大模型学习资料,帮助读者掌握相关技能。
2025-07-01 11:36:01
724
原创 本地私有化RAG知识库搭建心得总结
【摘要】 2025年DeepSeek AI爆火后,因服务中断引发私有化部署热潮。本文总结2个月实践: 路线选择:普通用户推荐豆包+在线工具;高敏感需求建议本地部署。 常见误区:本地知识库≠搜索引擎,需人工整理数据源,避免“原样投喂”。 应用场景:快速检索、系统化思维训练、知识闭环管理。 配置建议:显存12G+显卡、32G内存、SSD硬盘,平衡性能与成本。 优化方向:关注提示词设计、向量解析适配,定期更新模型参数。 文末附AI学习资源包(含路线图、100套商业方案、视频教程),助力从入门到进阶。
2025-07-01 10:56:57
980
原创 提示工程(Prompt Engineering)最全综述:本质、技术、最佳实践
提示工程(Prompt Engineering)是通过优化输入提示引导大语言模型(LLM)生成精准输出的技术。提示可以是问题、指令或多模态组合,其质量直接影响模型响应效果。提示工程结合对模型行为的理解,通过迭代实验设计适合特定任务的提示。此外,控制模型输出需配置参数如输出长度、温度值(控制随机性)和top-k/p采样(筛选候选词)。这些配置共同调节生成内容的准确性与多样性,是优化模型表现的关键要素。
2025-06-30 17:41:34
540
原创 Transformer模型详解(原理版+图解版+实战版)
Transformer是一种基于自注意力机制的深度学习模型,广泛应用于自然语言处理等序列任务。其核心创新是自注意力机制和多头注意力,能够并行处理输入序列中的全局信息。模型由编码器和解码器组成,输入包含单词Embedding和位置Embedding。自注意力通过计算查询(Q)、键(K)、值(V)矩阵获取单词间的关系权重,最终输出加权后的表示。Transformer通过堆叠层、残差连接和归一化等技术,实现了高效的序列建模能力,成为NLP领域的重要基础架构。
2025-06-30 17:02:44
733
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人