文章目录
- 前言
-
- 为什么要学?
- 什么是大语言模型?
- 什么是 AI 智能体(Agent)?
- 智能体核心公式
- 智能体祛魅
- 构建智能体的原则
- 智能体的一些场景
- 零基础入门AI大模型
-
- 1.学习路线图
- 2.视频教程
- 3.技术文档和电子书
- 4.LLM面试题和面经合集
- 5.免费获取
前言
最近社群里都在研究 AI 智能体,是一个很火的赛道,作为程序员的我,不禁也对智能体很有兴趣,接下来给大家分享一下我在学习智能体的一些感悟和心得,和大家一起成长。
为什么要学?
我们先搞清楚为什么?
最近看到 AI 创新力五问,我们日常生活中有使用 AI 来融入到我们的学习工作流嘛?
值得我们日常反省。
未来企业人才招聘测试AI创新力的五问:
- 您是否处于每天习惯使用 AI 的状态?
- 请依据 XX 任务为我创作一个提示词工程。
- 倘若 AI 给出的答案无法令您满意,您会怎样与 AI 进行交互?
- 请为我拆解一个任务的工作流程。
- 若要搭建一个 AI 智能体,以使此工作流更简便地完成,您会如何构建?
我理解我们学 AI 核心是为了提升效率,增加竞争力。
什么是大语言模型?
我们在了解智能体之前先了解一下大语言模型(LLM),大语言模型可以接受输入、进行分析或推理,最终进行输出,就好比我们现在常用的 ChatGPT 和 Kimi。
然而,大语言模型无法像人类一样,拥有规划思考能力、运用各种工具与物理世界互动,以及拥有人类的记忆能力。
- LLM:接受输入、思考、输出
- 人类:LLM(接受输入、思考、输出)+ 记忆 + 规划 + 工具
什么是 AI 智能体(Agent)?
智能体的英文是 Agent。
Agent 可以翻译为代理人、代理商,可以帮助我们完成一些事情的实体,可以是人或机器。
我们可以理解为一个智能助手,只需要我们给出任务,他就可以自己作出决策并执行的智能助手。
在没有智能体之前,我们先考虑一个场景:我们需要写一篇智能体的科普文
- 第一步:先打开搜索引擎搜索一些相关书籍相关文章来进行阅读,打开我们的思路。
- 第二步:参考了大量的书籍和文章后,形成自己的思路,创建文章的大纲。
- 第三步:针对我们的大纲,对每个段落进行编写,编写过程中不断调整。
- 第四步:编写之后需要对文章进行排版,对文章进行校对,也需要对前文进行修改。
- 第五步:写完之后,找朋友帮忙看看,预览一下,看下有什么问题,不合理的地方进行修改。
- 第六步:冥思苦想一个容易爆火的标题,增加浏览量。
没有智能体前,我们要不就是人工处理,每一步都人工去做,要么写一段提示词,让大模型进行信息整理,写大纲,写章节,起标题,并进行修改。
但是有以下缺点:
- 我们需要用不同的提示词来完成不同的任务。
- 大模型没有记忆能力,有上下文限制。
- 提示词会非常复杂,不利于维护。所以我们引出智能体的概念。
智能体核心公式
我们直接给出智能体的核心公式。
Agent(智能体)=LLM(大模型)+ Planning(规划)+Memory(记忆)+ Tools(工具)
人类:LLM(接受输入、思考、输出)+ 记忆 + 规划 + 工具 我们可以看到智能体越来越像人了,但是没有情感。
我们来解读一下上面这张图,以便大家更好地理解。
- 记忆(Memory)
短期记忆:执行任务过程中的上下文,会在子任务的执行过程产生和暂存,在任务完结后被清空。
长期记忆:长时间保留的信息,一般是指外部知识库。 - 规划(Planning)
智能体会把大型任务分解为子任务,并规划执行任务的流程;智能体能体会对任务执行的过程进行思考和反思,从而决定是继续执行任务,或判断任务完结并终止运行。
简单来说,就是我们上面提到的写作流程,收集、写大纲,写章节等等,俗称工作流。 - 工具(Tools)
为智能体配备工具 API,比如:计算器、搜索工具、代码执行器、数据库查询工具等。有了这些工具 API,智能体就可以和物理世界交互,解决实际的问题。
智能体祛魅
什么是祛魅?
打破神秘感,理性思考,智能体没有那么难。
我们再来回头看一下上面的公式。
Agent(智能体)=LLM(大模型)+ Planning(规划)+Memory(记忆)+ Tools(工具)
经过上述的解释,你应该有了一定的了解,
这个公式只是一个智能体的完整体,
而只要是能解决我们的需求,哪怕只用了其中一两项,也可以称之为是智能体,所以不要害怕,勇敢的手搓起来。
核心在于如何提效,如何解决我们的问题。
构建智能体的原则
两个核心原则:
了解自己的需求
了解智能体的能力
智能体的一些场景
文案:爆款标题、文案输出、爆款文章
写作:续写、改写、周报
效率工具:翻译、记账、百科,提效工具
编程助手:代码审查、代码解释
客服:智能回复
生活:什么值得买、旅行规划等等
大家一起探索一下。
关于AI大模型技术储备
学好 AI大模型 不论是就业还是在工作技能提升上都不错,但要学会 AI大模型 还是要有一个学习规划。最后大家分享一份全套的 AI大模型 学习资料,给那些想学习 AI大模型 的小伙伴们一点帮助!
感兴趣的小伙伴,赠送全套AI大模型学习资料和安装工具,包含Agent行业报告、精品AI大模型学习书籍手册、视频教程、最新实战学习等录播视频,具体看下方。
需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
