拓扑排序(Topological Sorting)是指将有向无环图(DAG, Directed Acyclic Graph)中的所有顶点按某种线性顺序排列的一种算法。其要求是,对于图中的每一条有向边 U -> V 在排序结果中顶点U必须出现在顶点V之前。
拓扑排序常用于处理依赖关系问题,例如任务调度、编译顺序等,能够有效地帮助我们确定应先完成哪些任务。
拓扑排序的基本特性包括:
- 存在性: 只有在图为有向无环图时,才存在拓扑排序。
- 不唯一性: 对于同一个图,可能存在多个有效的拓扑排序。
拓扑排序的常用算法有 Kahn 算法和深度优先搜索(DFS)算法
我们对统一一个例题分析
Kahn(卡恩)算法
kahn算法的思想就是现将入度为0的条件放进队列中,从队列弹出来的时候,将其存进tp(拓扑序列)中,并且将其子节点的入度再次减少1,然后不断将入度为0的子节点加入到队列,不断重复这个操作,如果最终tp序列的长度为n,那就说明整张图是无环的,否则就说明图中有环
那么我们得到的代码就是
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n;
vector<int> e[105];
int x;
int ru[105];
queue<int> que;
queue<int> tp;
void topusort()
{
for(int i=1;i<=n;i++)
{
if(ru[i]==0)
{
que.push(i);
}
}
while(!que.empty())
{
int v=que.front();
que.pop();
tp.push(v);
for(int u:e[v])
{
ru[u]--;
if(ru[u]==0)
{
que.push(u);
}
}
}
}
signed main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
while(cin>>x)
{
if(x==0)
break;
else
{
e[i].push_back(x);
ru[x]++;
}
}
}
topusort();
while(!tp.empty())
{
cout<<tp.front()<<" ";
tp.pop();
}
return 0;
}
DFS算法
dfs算法基于变色法的一种思想,在后续的匈牙利算法中也会提到,这里就先不过多讲述了
我们的每一个节点都会经历0 -> -1 -> 1的一种变化,当颜色为0的时候,那么我们的点就是还没有访问过的,因此直接访问,将这个结点的颜色变为-1,然后继续深搜跑,如果跑的的节点的颜色是-1,那就说明这张图出现了环,如果是0,就继续深搜,如果是1就跳过
然后最后将序列翻转一下就是最终的拓扑序列
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n;
int x;
vector<int> e[105];
int c[105];
vector<int> tp;
bool topusort(int v)
{
c[v]=-1;
for(int u:e[v])
{
if(c[u]==-1)
{
return false;//有环
}
else if(c[u]==0)
{
if(topusort(u)==0)
{
return false;
}
}
}
c[v]=1;
tp.push_back(v);
return 1;
}
signed main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
while(cin>>x)
{
if(x==0)
{
break;
}
else
{
e[i].push_back(x);
}
}
}
for(int i=1;i<=n;i++)
if(c[i]==0)
topusort(i);
reverse(tp.begin(),tp.end());
for(int u:tp)
{
cout<<u<<" ";
}
return 0;
}