拓扑排序初讲

拓扑排序(Topological Sorting)是指将有向无环图(DAG, Directed Acyclic Graph)中的所有顶点按某种线性顺序排列的一种算法。其要求是,对于图中的每一条有向边 U -> V 在排序结果中顶点U必须出现在顶点V之前。

拓扑排序常用于处理依赖关系问题,例如任务调度、编译顺序等,能够有效地帮助我们确定应先完成哪些任务。

拓扑排序的基本特性包括:

  1. 存在性: 只有在图为有向无环图时,才存在拓扑排序。
  2. 不唯一性: 对于同一个图,可能存在多个有效的拓扑排序。

拓扑排序的常用算法有 Kahn 算法和深度优先搜索(DFS)算法

我们对统一一个例题分析

Kahn(卡恩)算法

kahn算法的思想就是现将入度为0的条件放进队列中,从队列弹出来的时候,将其存进tp(拓扑序列)中,并且将其子节点的入度再次减少1,然后不断将入度为0的子节点加入到队列,不断重复这个操作,如果最终tp序列的长度为n,那就说明整张图是无环的,否则就说明图中有环

那么我们得到的代码就是

#include<bits/stdc++.h>
using namespace std;
#define int long long
int n;
vector<int> e[105];
int x;
int ru[105];
queue<int> que;
queue<int> tp;
void topusort()
{
	for(int i=1;i<=n;i++)
	{
		if(ru[i]==0)
		{
			que.push(i);
		}
	}
	while(!que.empty())
	{
		int v=que.front();
		que.pop();
		tp.push(v);
		for(int u:e[v])
		{
			ru[u]--;
			if(ru[u]==0)
			{
				que.push(u);
			}
		}
	}
}
signed main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		while(cin>>x)
		{
			if(x==0)
			break;
			else
			{
				e[i].push_back(x);
				ru[x]++;
			}
		}
	}
	topusort();
	while(!tp.empty())
	{
		cout<<tp.front()<<" ";
		tp.pop();
	}
	return 0;
}

DFS算法

dfs算法基于变色法的一种思想,在后续的匈牙利算法中也会提到,这里就先不过多讲述了

我们的每一个节点都会经历0  ->  -1  ->  1的一种变化,当颜色为0的时候,那么我们的点就是还没有访问过的,因此直接访问,将这个结点的颜色变为-1,然后继续深搜跑,如果跑的的节点的颜色是-1,那就说明这张图出现了环,如果是0,就继续深搜,如果是1就跳过

然后最后将序列翻转一下就是最终的拓扑序列

#include<bits/stdc++.h>
using namespace std;
#define int long long
int n;
int x;
vector<int> e[105];
int c[105];
vector<int> tp;
bool topusort(int v)
{
	c[v]=-1;
	for(int u:e[v])
	{
		if(c[u]==-1)
		{
			return false;//有环 
		}
		else if(c[u]==0)
		{
			if(topusort(u)==0)
			{
				return false;
			}
		}
	}
	c[v]=1;
	tp.push_back(v);
	return 1;
}
signed main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		while(cin>>x)
		{
			if(x==0)
			{
				break;
			}
			else
			{
				e[i].push_back(x);
			}
		}
	}
	for(int i=1;i<=n;i++)
	if(c[i]==0)
	topusort(i);
	reverse(tp.begin(),tp.end());
	for(int u:tp)
	{
		cout<<u<<" ";
	}
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值