数据结构的基本术语
-
数据 计算机程序中可以操作的信息元素,可以是数字、字符、图像、声音等。
-
数据元素 数据结构中的基本单位,可以是单个数据项或一组数据项。
-
数据项 数据元素中的具体信息,如一个整数、一个字符或一个字符串。
三者之间的关系:数据 > 数据元素 > 数据项
-
数据对象 一组具有相同属性的数据元素的集合。
数据结构:指的是数据在计算机中的组织方式。
1、逻辑结构 : 关注元素之间的逻辑关系,决定数据如何组织和关联
2、存储结构:关注数据之间在计算机内存中的物理存放方式,决定了数据如何实际存储
逻辑结构分类:
-
集合:数据元素间除"同属于一个集合"外无其它关系
-
线性结构:一个对一个,如线性表、栈、队列
-
树形结构:一个前驱对多个后继
-
图形结构:多个对多个
存储结构的分类:
顺序存储结构:数据元素在物理位置上是连续的
链式存储结构:数据元素在物理位置上不一定连续。每个数据元素包含两部分:一是存储结构本身的信息,二是一个或多个指向其他数据元素的指针(或引用)
算法的五个基本特性:
-
输入 有0个或多个输入
-
输出 有一个或多个输出(处理结果)
-
确定性 每步定义都是确切、无歧义的
-
有穷性(有限性) 算法应在执行有穷步后结束
-
可行性 算法中的每一步都必须是可行的
算法的评价:
正确性
可读性
健壮性:出现小错误不影响
高效性:从时间代价到空间代价来评价
时间复杂度
常数时间复杂度 O(1):无论n大小如何,计算和返回结果所需时间都是常数时间对数时间复杂度 O(log₂n):二分搜索算法,每次比较搜索范围都减半线性时间复杂度
O(n):单层循环平方时间复杂度
O(n²) :嵌套循环
(从上到下,对应时间复杂度从低到高)
语句频度
算法中某个特定语句(或语句块)被执行的次数。 计算语句频度通常需要考虑算法中的循环结构。以下是一些常见的情况: 1、单层循环:语句频度 = 循环次数 例如,如果有一个循环,循环次数为 n,则循环体内的语句频度就是 n。
2、嵌套循环:语句频度 = 外层循环次数 × 内层循环次数 例如,如果有一个外层循环 n 次,内层循环 m 次,则嵌套循环体内的语句频度就是 n×m。
五步计算时间复杂度
01 找出循环 02 计算循环次数 03 相乘嵌套循环 04 忽略低阶项和常数 05 使用大O表示法
空间复杂度的类型
常数空间复杂度(O(1)) 算法所需空间不随输入规模变化。
算法使用一个临时变量来交换元素,不需要额外的存储空间与数组大小有关,因此:空间复杂度是O(1)。
线性空间复杂度(O(n)) 算法所需空间与输入数据量成正比。
算法创建了一个新的数组来存储反转后的元素,这个数组的大小与输入数组相同,因此:空间复杂度是O(n)。