
单细胞
文章平均质量分 79
请你喝好果汁641
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
未完待续|植物结构
它是一个植物学名词,主要指植物根的维管柱外围的一层细胞,具有潜在的分裂能力,可参与侧根的形成等过程。指植物根或茎初生构造中,皮层最内侧一圈紧密排列的细胞层,其细胞壁常发生凯氏带(Casparian strip)加厚,控制水分和溶质进入维管束。负责将叶片光合作用产生的有机养分(主要是蔗糖)从源(叶)向库(根、果实、芽等)运输的维管组织,由筛管分子、伴胞、韧皮纤维和薄壁细胞组成。指植物胚胎或幼苗中最早出现的维管束前体分生组织,可进一步分化为初生木质部和初生韧皮部,是根、茎中维管组织的发源地。原创 2025-07-29 15:49:48 · 202 阅读 · 0 评论 -
wilcoxauc()替代findallmarker()
包中的一个工具,用于快速计算 Wilcoxon 秩和检验和曲线下面积(auROC)。这个函数特别适用于单细胞 RNA 测序数据,可以处理多种输入格式,包括密集矩阵、稀疏矩阵、Seurat 对象和 SingleCellExperiment 对象。函数是一个强大的工具,适用于单细胞 RNA 测序数据的差异表达分析。通过支持多种输入格式,您可以轻松地将其应用于不同的数据类型。希望上述指南能帮助您正确使用该函数。如果您有其他问题或需要进一步的帮助,请随时告诉我!如果您的数据是稀疏矩阵(如。首先,确保您已经安装了。原创 2025-07-08 13:21:01 · 651 阅读 · 0 评论 -
单细胞数据格式转换:rds 与 h5ad互转
将 RDS 格式的单细胞数据转换为 H5AD 格式。将 H5AD 格式的单细胞数据转换为 RDS 格式。原创 2025-07-07 16:46:41 · 235 阅读 · 0 评论 -
植物发育、适应和进化中的顺式调控元件
顺式调控元件(cis-Regulatory elements)是基因组蓝图的编码者,它们确保了基因表达在时间和空间上的适当模式,这对于正常的发育以及对环境的响应是必需的。越来越多的证据表明,基因表达的变化是真核生物表型创新的主要来源,包括哺乳动物中的急性表型,如疾病和癌症。此外,影响顺式调控序列的遗传和表观遗传变异在更长的进化时间尺度上已成为形态分歧和本地适应研究中的一个反复出现的主题。在这里,我们讨论了识别各种顺式调控元件类别及其在植物发育和环境响应中的作用的功能和方法。原创 2025-07-03 09:19:02 · 758 阅读 · 0 评论 -
DNBC4tools使用
这是华大基因开发的用于分析高通量。单细胞测序数据的开源分析流程工具。原创 2025-07-01 18:05:16 · 886 阅读 · 0 评论 -
单细胞相关教程
原创 2025-06-11 15:02:36 · 110 阅读 · 0 评论 -
【无标题】
2.单细胞常用数据库介绍及使用: 是美国国立生物技术信息中心(NCBI)维护的公共基因表达数据库,网址为。GEO数据库包含高通量基因表达数据,支持从单个细胞到组织水平的基因表达分析。: 是由加州大学圣克鲁兹分校提供的数据库,网址为。它提供了多种细胞类型的基因表达数据,支持对单细胞RNA测序数据的查询和分析。: 是一个旨在建立人体所有细胞类型的参考图谱的项目,网址为。HCA数据库包含大量的单细胞RNA测序数据,有助于理解细胞的多样性和功能。: 由国家基因库生命大数据平台(CNGBdb)提供,网址为。原创 2025-06-09 21:18:36 · 201 阅读 · 0 评论 -
单细胞转录组(4)Cell Ranger
使用Cell Ranger进行单细胞数据分析是一个多步骤的过程,包括数据转换、质控、生成基因表达矩阵以及结果解读和可视化。数据转换 BCL2FASTQ使用Illumina提供的bcl2fastq软件将测序仪生成的BCL格式数据转换为FASTQ格式,这是进行下游分析的前提。数据质控利用FastQC等工具对FASTQ数据进行质控,确保数据质量符合分析要求。生成矩阵 COUNT使用Cell Ranger软件对原始数据进行比对和定量分析,生成基因表达矩阵。原创 2025-05-17 22:00:07 · 1001 阅读 · 0 评论 -
单细胞转录组(3)
是 10x Genomics 提供的官方数据分析软件,它支持从原始测序数据(FASTQ 或 BCL 格式)到基因表达矩阵的生成,并提供聚类、降维等分析功能。需要下载大鼠的基因组序列和GTF文件,过滤GTF文件,最后构建参考序列。对于猕猴(Rhesus macaque)等其他物种,步骤与斑马鱼类似,需要下载对应的基因组序列和GTF文件,然后进行过滤和构建参考序列。是 Illumina 提供的软件,用于将 BCL 格式的测序数据转换为 FASTQ 格式,这是单细胞测序数据分析的前置步骤。原创 2025-05-17 21:40:59 · 1218 阅读 · 0 评论 -
单细胞转录组(2)单细胞测序原理
10x Genomics 单细胞测序技术通过 GEM、Barcode 和 UMI 的结合,实现了高通量、低成本的单细胞测序。这些技术的结合不仅提高了单细胞测序的通量,还提高了数据的准确性和可靠性。10x Genomics 平台因其高效性和经济性,已成为单细胞测序领域的主流选择。10x Genomics 单细胞测序平台通过其高效、高通量和低成本的特点,为单细胞基因表达分析提供了强大的工具。这些优势使得该平台在单细胞研究领域中非常受欢迎,适用于各种生物学和医学研究。原创 2025-05-17 21:21:29 · 1055 阅读 · 0 评论 -
单细胞转录组(1)
细胞是生物体的基本结构和功能单位,所有生物体(除病毒外)均由细胞组成。传统测序基于多细胞进行,提取组织的DNA或RNA后测序。而单细胞测序(scRNA-seq)能够对单个细胞进行测序,提供单细胞水平的基因表达观测方法,有助于更好地研究组织中不同类型的细胞及其相互作用。传统测序的局限性传统测序方法(如bulk RNA-seq)是基于多细胞样本进行的,检测的是样本中所有细胞的基因表达平均值。这种方法无法反映细胞间的异质性,即不同细胞之间的基因表达差异。原创 2025-05-17 17:31:44 · 1384 阅读 · 0 评论 -
文章复现|(1)整合scRNA-seq 和空间转录组学揭示了子宫内膜癌中 MDK-NCL 依赖性免疫抑制环境
目标:肿瘤微环境(TME)在子宫内膜癌(EC)的进展中起着重要作用。我们旨在评估EC的TME中的细胞群体。方法:我们从GEO下载了EC的单细胞RNA测序(scRNA-seq)和空间转录组(ST)数据集,并从TCGA下载了TCGA-UCEC项目的RNA-Seq (FPKM)和临床数据。使用R软件对这些数据集进行了分析。结果:我们获得了5个scRNA-seq数据集,1个ST数据集和569个RNA测序样本。在来自scRNA-seq的33,162个细胞中,共检测到20亿个转录本和33,408个基因。原创 2025-05-15 22:46:19 · 909 阅读 · 0 评论 -
单细胞|M3-6.筛选特定的细胞群体、预处理、
这段代码的核心功能是从一个中筛选特定的细胞,进行降维、批次效应校正等预处理步骤,然后绘制和展示这些细胞的可视化图。它按聚类标签对细胞进行着色,并提供了细胞群体可视化的控制参数(如是否显示标签、图像尺寸等)。代码中涉及的几个函数(如plot_cells和)都是 Monocle3 中用于单细胞轨迹分析和可视化的关键工具。原创 2024-11-22 11:05:12 · 822 阅读 · 0 评论 -
单细胞|M3-5. 细胞类型标注与可视化
从数据结构和讲解的角度分析,其核心操作包括。原创 2024-11-22 10:28:06 · 939 阅读 · 0 评论 -
单细胞|M3-4. 细胞聚类与轨迹推断
要解读这段代码的数据结构和内容,需要先明确每个数据对象和函数的功能。对象,来自 Monocle3。函数用于绘制细胞分布图,支持多种颜色映射方式,比如按分区、聚类或拟时序。通过这些步骤,可以有效地展示不同细胞群体的分布及其分区关系。这一步执行了基于 UMAP 的。绘图用到的数据来源于。原创 2024-11-22 09:46:29 · 707 阅读 · 0 评论 -
单细胞|M3涉及函数及基本用法
通过添加每个函数的基本语法,可以更清楚地理解代码逻辑及各部分的操作。原创 2024-11-22 09:27:41 · 950 阅读 · 0 评论 -
空间与单细胞转录组学的整合定位肾损伤中上皮细胞与免疫细胞的相互作用
间质的已知标记物的特征图显示在图2,F-M中。除了CD(90.7%)之外,所有聚类都以超过95%的准确度映射到了相应的组织学结构,CD在样本中的整体斑点数最少。在一个与单细胞聚类整合类似的过程中(8),基于共同邻居的锚定,为30个snRNA-Seq聚类中的每一个分配了转移到空间转录组斑点的分数。在无监督空间转录组分类的斑点和用预期的snRNA-Seq转移标签重新定义的斑点之间发现了强烈的相关性。提供了一张H&E切片的局部放大图,分别在未叠加(图1C)和叠加无监督聚类结果的情况下展示(图1D和E)。原创 2024-11-21 21:05:11 · 1164 阅读 · 0 评论 -
单细胞|检查基因列表是否存在于数据集并提取缺失基因
从数据结构的角度来看,这段代码的核心是操作一个列表对象 ,并使用逻辑检查操作()对其内容(基因名称)进行处理,以找到哪些基因缺失于目标数据集 中。以下是逐步的解读: 是一个 列表,它包含两个基因集,每个基因集是一个 字符向量,代表基因的名称。 是一个列表,包含两个元素: 是一个字符向量,长度为 6。 是另一个字符向量,长度为 6。2. 数据结构: 是一个 字符向量,通常来自 Seurat 对象的行名,表示数据集中所有基因的名称。 是一个长度为 4 的字符向量,代表数据集中实际原创 2024-11-21 16:08:10 · 754 阅读 · 0 评论 -
单细胞分析核心操作概述:亚群整合、提取与重命名,以及元数据与 Assay 的交互更新
提取某些细胞群并细分为亚群(如成纤维细胞分为 FIB1、FIB2、FIB3)后,需要将这些细分注释的结果合并回大群,形成完整注释。结果: 的 metadata 中新增一列 ,整合了原始分群和亚群注释。在可视化中显示如:用途:用于保存细化的细胞注释,方便在后续分析中直接使用。从大群中提取某些特定的亚群,或删除少量不需要的亚群。通过 提取:提取分群编号为 0 和 2 的细胞。通过 提取:提取细胞类型为 “Naive CD4 T” 和 “Memory CD4 T” 的细胞。原创 2024-11-19 11:35:55 · 3339 阅读 · 0 评论 -
M3-拟时序分析-2. 数据准备和单细胞数据转换CellDataSet(使用monocle3)
这段代码的核心步骤是从Seurat对象提取必要的数据,并将其转换为monocle3所需的格式,以便进行进一步的分析,如轨迹推断等。每一步都处理了不同的数据格式和数据结构,以确保可以顺利进行后续的单细胞分析。原创 2024-11-19 09:01:54 · 1779 阅读 · 0 评论 -
单细胞-marker基因列表去重
Marker: 一个命名列表,包含每个细胞类型的标记基因集。all_genes: 一个去重后的基因向量,包含所有细胞类型的基因。: 一个命名列表,包含每个细胞类型与剩余基因集的交集,确保基因唯一分配。通过这种方法,保证了每个细胞类型的标记基因不会与其他类型重复,便于后续分析和标记基因的处理。原创 2024-11-19 09:01:41 · 672 阅读 · 0 评论 -
GPT进行细胞类型注释
如果可以,提供越多相关信息会让注释更准确,同时也可以结合额外的功能分析和参考数据库来支持结果解释。如果可以,提供具体的差异表达分析结果表(例如。原创 2024-11-19 09:01:25 · 488 阅读 · 0 评论 -
monocle3-轨迹推断
是一个用于分析单细胞转录组数据的 R 包,主要用于进行和。它提供了一整套处理和可视化单细胞RNA-seq数据的工具,尤其擅长于分析细胞在动态生物学过程中(如发育、分化、疾病进展等)的变化。原创 2024-11-18 15:19:38 · 1454 阅读 · 0 评论 -
M1-三、UMI 密度分布和阈值筛选
这段代码主要的作用是可视化 UMI 密度分布图并突出显示过滤阈值。在UMI密度分布图中添加一个虚线,表示第10百分位阈值。调整x轴和y轴的显示范围,确保图形更加紧凑且清晰。在图形中加入一个文本标注,指示出阈值的具体数值,帮助用户理解该阈值的含义和作用。通过这种方式,可以清晰地看到UMI数量的分布情况,并且帮助理解过滤标准是如何确定的。原创 2024-11-18 14:05:30 · 542 阅读 · 0 评论 -
M1-二、过滤 pbmc1 数据集
代码首先通过match函数查找doublet1和doublet2中哪些细胞在原始数据doublet中存在。使用逻辑比较标记是否为双细胞,并将没有匹配到的细胞(即NA)标记为FALSE。最后,将id1和id2中为TRUE的细胞在原始数据框doublet中标记为"Doublet"。原创 2024-11-18 11:27:27 · 476 阅读 · 0 评论 -
一、数据读取-多样本-去双胞
从多个文件夹中读取 10X 数据。创建 Seurat 对象并进行基础的预处理。计算每个细胞的线粒体基因比例 (percent.mt) 和红细胞基因比例 (percent.HB最后将处理后的seu_list保存为.qs文件,以便后续使用。如果你对这一部分理解清楚了,我们可以继续讲解后面的部分,涉及双细胞去除的流程。原创 2024-11-18 10:55:15 · 743 阅读 · 0 评论 -
学习笔记:使用Seurat进行细胞类型注释
这段代码的核心作用是根据每个聚类编号()将相应的细胞类型标签(cell_type)赋给Seurat对象中的细胞。它通过遍历celltype数据框中的每个细胞类型和聚类编号,找到属于同一聚类的所有细胞,并为这些细胞添加对应的细胞类型信息。这在单细胞RNA测序数据分析中非常常见,通常用于将聚类结果与实际的生物学细胞类型进行关联。这种做法可以帮助研究者更容易地解释和分析聚类结果,并进一步理解细胞的生物学特征。which()非常有用,它可以帮助你根据某些条件筛选数据或获得特定条件下的元素索引。原创 2024-11-18 10:43:04 · 1750 阅读 · 0 评论 -
跨组的重复检测、误解去重的范围、生成 `Marker_genes` 时失去分组结构。
问题:跨组的重复检测、误解去重的范围、生成时失去分组结构。解决方案:使用unlist()展开所有基因,单独检查跨组重复,并在组内去重后保留原始分组结构。原创 2024-11-04 10:29:44 · 341 阅读 · 0 评论