目录
第一步:引入必要的库并且创建数据集(这里使用的例子是房价与面积的关系)
第三步 观察与测评求出的W,B值与数据集的拟合程度并且做出预测
前言 (基础知识的准备 最小二乘法在回归中的应用)
1. 简单线性回归中的最小二乘法公式
2. 多元线性回归中的最小二乘法公式
利用最小二乘法解决最简单的一元线性回归问题
第一步:引入必要的库并且创建数据集(这里使用的例子是房价与面积的关系)
这里用的是随机的数据(房价与房屋面积)
- 假设房屋价格与房屋面积呈近似线性关系
In [194]:
import numpy as np import math import matplotlib.pyplot as plt
In [195]:
def make_data(): np.random.seed(1) x = np.random.rand(50)*30+50 #随机数生成100个数据表示房屋面积 以数组形式 noise = np.random.rand(50)*50 #噪声 y = x*8-100+noise #表示房屋价格 数组形式 return x,y
利用图标展现房屋价格与房屋面积的关系
In [197]:
# 生成房屋价格与房屋面积的散点图 x,y=make_data() plt.xlabel('area') plt.ylabel('prize') plt.title('Area-Prize Table') plt.scatter(x, y, c='r', marker='.', alpha=0.6, label='prize', linewidths=3) plt.legend() plt.show()
很明显他呈现近似一元线性关系,因此我们可以用一些方法去最大