机器学习:线性回归:最小二乘法应用一元线性回归(持续更新)

目录

前言 (基础知识的准备 最小二乘法在回归中的应用)

利用最小二乘法解决最简单的一元线性回归问题

第一步:引入必要的库并且创建数据集(这里使用的例子是房价与面积的关系)

第二步 利用某些方法去用一条直线去拟合你的数据

第三步 观察与测评求出的W,B值与数据集的拟合程度并且做出预测


前言 (基础知识的准备 最小二乘法在回归中的应用)

    1. 简单线性回归中的最小二乘法公式

     2. 多元线性回归中的最小二乘法公式

利用最小二乘法解决最简单的一元线性回归问题

第一步:引入必要的库并且创建数据集(这里使用的例子是房价与面积的关系)

这里用的是随机的数据(房价与房屋面积)

  • 假设房屋价格与房屋面积呈近似线性关系

In [194]:

import numpy as np
import math
import matplotlib.pyplot as plt

In [195]:

def make_data():
    np.random.seed(1)
    x = np.random.rand(50)*30+50 #随机数生成100个数据表示房屋面积 以数组形式
    noise = np.random.rand(50)*50 #噪声
    y = x*8-100+noise   #表示房屋价格 数组形式
    return x,y

利用图标展现房屋价格与房屋面积的关系

In [197]:

# 生成房屋价格与房屋面积的散点图
x,y=make_data()
plt.xlabel('area')
plt.ylabel('prize')
plt.title('Area-Prize Table')
plt.scatter(x, y, c='r', marker='.', alpha=0.6, label='prize', linewidths=3)
plt.legend()
plt.show()

很明显他呈现近似一元线性关系,因此我们可以用一些方法去最大

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值