每日一题7.17状压dp

状压dp的板子题:

P10447 最短 Hamilton 路径 - 洛谷

题目描述

给定一张 n 个点的带权无向图,点从 0∼n−1 标号,求起点 0 到终点 n−1 的最短 Hamilton 路径。

Hamilton 路径的定义是从 0 到 n−1 不重不漏地经过每个点恰好一次。

输入格式

第一行输入整数 n。

接下来 n 行每行 n 个整数,其中第 i 行第 j 个整数表示点 i−1 到 j−1 的距离(记为 a[i−1,j−1])。

对于任意的 x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]≥a[x,z]。

输出格式

输出一个整数,表示最短 Hamilton 路径的长度。

输入输出样例

输入 #1复制

5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5
1 3 3 5 0

输出 #1复制

18

说明/提示

对于所有测试数据满足 1≤n≤20,0≤a[i,j]≤107

状态压缩:用0和1来代替有没有通过过这个点,如1001代表通过0和3节点。

#include<bits/stdc++.h>//状压DP
using namespace std;//dp[i][j]表示在i的状态下,到达j的最短路径长度
#define INF 0x3f3f3f3f//无穷大
int main()
{
	int n;
	cin >> n;
	vector<vector<int>> a(n, vector<int>(n, 0));
	for (int i = 0; i < n; i++)
		for (int j = 0; j < n; j++)
			cin >> a[i][j];
	vector<vector<int>> dp(1<<n, vector<int>(n, INF));
	dp[1][0] = 0;
	for (int i = 1; i < 1 << n; i++)
		for (int j = 1; j < n; j++)
		{
			if (!(i >> j & 1))continue;//如果没有通过过这个j点,则continue
			else
			{
				for (int k = 0; k < n; k++)
					if (i >> k & 1)
						dp[i][j] = min(dp[i][j], dp[i ^ (1 << j)][k] + a[k][j]);//dp从k到j进行更新
			}
		}
			
	cout << dp[(1 << n) - 1][n - 1];
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值