状压dp的板子题:
题目描述
给定一张 n 个点的带权无向图,点从 0∼n−1 标号,求起点 0 到终点 n−1 的最短 Hamilton 路径。
Hamilton 路径的定义是从 0 到 n−1 不重不漏地经过每个点恰好一次。
输入格式
第一行输入整数 n。
接下来 n 行每行 n 个整数,其中第 i 行第 j 个整数表示点 i−1 到 j−1 的距离(记为 a[i−1,j−1])。
对于任意的 x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]≥a[x,z]。
输出格式
输出一个整数,表示最短 Hamilton 路径的长度。
输入输出样例
输入 #1复制
5 0 2 4 5 1 2 0 6 5 3 4 6 0 8 3 5 5 8 0 5 1 3 3 5 0
输出 #1复制
18
说明/提示
对于所有测试数据满足 1≤n≤20,0≤a[i,j]≤107
状态压缩:用0和1来代替有没有通过过这个点,如1001代表通过0和3节点。
#include<bits/stdc++.h>//状压DP
using namespace std;//dp[i][j]表示在i的状态下,到达j的最短路径长度
#define INF 0x3f3f3f3f//无穷大
int main()
{
int n;
cin >> n;
vector<vector<int>> a(n, vector<int>(n, 0));
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
cin >> a[i][j];
vector<vector<int>> dp(1<<n, vector<int>(n, INF));
dp[1][0] = 0;
for (int i = 1; i < 1 << n; i++)
for (int j = 1; j < n; j++)
{
if (!(i >> j & 1))continue;//如果没有通过过这个j点,则continue
else
{
for (int k = 0; k < n; k++)
if (i >> k & 1)
dp[i][j] = min(dp[i][j], dp[i ^ (1 << j)][k] + a[k][j]);//dp从k到j进行更新
}
}
cout << dp[(1 << n) - 1][n - 1];
return 0;
}